Laurence G Miller
I am scientist Emeritus with the Environmental Hydrodynamics Branch of the Earth Systems Process Division of the USGS Water Resources Mission Area.
Our mission is to understand the processes that affect availability, movement, and quality of the Nation’s water resources. I’m currently engaged in studies of the fate of chromium in contaminated groundwater, the ecology and geochemistry of Mono Lake, CA, and the role of bacteria in transforming hydrocarbons in the subsurface.
Professional Studies/Experience
- May 1984 to Present: Research Oceanographer, National Research Program, U.S. Geological Survey, Menlo Park, CA
- Sept. 1981 to May 1984: Oceanographer III, University of Washington, Seattle, WA
- Jan. 1977 to Sept. 1981: Research and Teaching Assistant, University of Southern California, Los Angeles, CA
- April 1973 to Dec. 1976: Research Technician, Lamont Doherty Earth Observatory, Columbia University, Palisades, NY
Education and Certifications
Education
1972 B.A., Marine Science, Southampton College, Long Island University
1980 M.S., Geological Science, University of Southern California
Science and Products
Filter Total Items: 55
Methane oxidation and molecular characterization of methanotrophs from a former mercury mine impoundment
The Herman Pit, once a mercury mine, is an impoundment located in an active geothermal area. Its acidic waters are permeated by hundreds of gas seeps. One seep was sampled and found to be composed of mostly CO2 with some CH4 present. The δ13CH4 value suggested a complex origin for the methane: i.e., a thermogenic component plus a biological methanogenic portion. The relatively 12C...
Authors
Shaun Baesman, Laurence G. Miller, Jeremy H. Wei, Yirang Cho, Emily D. Matys, Roger E. Summons, Paula V. Welander, Ronald S. Oremland
Methane oxidation linked to chlorite dismutation
We examined the potential for CH4 oxidation to be coupled with oxygen derived from the dissimilatory reduction of perchlorate, chlorate, or via chlorite (ClO−2) dismutation. Although dissimilatory reduction of ClO−4 and ClO−3 could be inferred from the accumulation of chloride ions either in spent media or in soil slurries prepared from exposed freshwater lake sediment, neither of these...
Authors
Laurence G. Miller, Shaun M. Baesman, Charlotte I. Carlström, John D. Coates, Ronald S. Oremland
Microbiological reduction of Sb(V) in anoxic freshwater sediments
Microbiological reduction of millimolar concentrations of Sb(V) to Sb(III) was observed in anoxic sediments from two freshwater settings: (1) a Sb- and As-contaminated mine site (Stibnite Mine) in central Idaho and 2) an uncontaminated suburban lake (Searsville Lake) in the San Francisco Bay Area. Rates of Sb(V) reduction in anoxic sediment microcosms and enrichment cultures were...
Authors
Ronald S. Oremland, Thomas R. Kulp, Laurence G. Miller, Franco Braiotta, Samuel M. Webb, Benjamin D Kocar, Jodi S. Blum
A biogeochemical and genetic survey of acetylene fermentation by environmental samples and bacterial isolates
Anoxic samples (sediment and groundwater) from 13 chemically diverse field sites were assayed for their ability to consume acetylene (C2H2). Over incubation periods ranging from ˜ 10 to 80 days, selected samples from 7 of the 13 tested sites displayed significant C2H2 removal. No significant formation of ethylene was noted in these incubations; therefore, C2H2 consumption could be...
Authors
Laurence G. Miller, Shaun M. Baesman, Julie Kirshtein, Mary A. Voytek, Ronald S. Oremland
Desulfohalophilus alkaliarsenatis gen. nov., sp. nov., an extremely halophilic sulfate- and arsenate-respiring bacterium from Searles Lake, California
A haloalkaliphilic sulfate-respiring bacterium, strain SLSR-1, was isolated from a lactate-fed stable enrichment culture originally obtained from the extreme environment of Searles Lake, California. The isolate proved capable of growth via sulfate-reduction over a broad range of salinities (125–330 g/L), although growth was slowest at salt-saturation. Strain SLSR-1 was also capable of...
Authors
Jodi Switzer Blum, Thomas R. Kulp, Sukkyun Han, Brian Lanoil, Chad W. Saltikov, John F. Stolz, Laurence G. Miller, Ronald S. Oremland
Response to comment on "Arsenic(III) Fuels Anoxygenic Photosynthesis in Hot Spring Biofilms from Mono Lake, California"
Schoepp-Cothenet et al. bring a welcome conceptual debate to the question of which came first in the course of planetary biological evolution, arsenite [As(III)] oxidation or dissimilatory arsenate [As(V)] reduction. However, we disagree with their reasoning and stand by our original conclusion.
Authors
Ronald S. Oremland, John F. Stolz, Michael E. Madigan, James T. Hollibaugh, Thomas R Kulp, Shelley E. Hoeft, J. Fisher, Laurence G. Miller, Charles W. Culbertson, M. Asao
Electricity generation by anaerobic bacteria and anoxic sediments from hypersaline soda lakes
Anaerobic bacteria and anoxic sediments from soda lakes produced electricity in microbial fuel cells (MFCs). No electricity was generated in the absence of bacterial metabolism. Arsenate respiring bacteria isolated from moderately hypersaline Mono Lake (Bacillus selenitireducens), and salt-saturated Searles Lake, CA (strain SLAS-1) oxidized lactate using arsenate as the electron acceptor...
Authors
L.G. Miller, R.S. Oremland
Arsenic(III) fuels anoxygenic photosynthesis in hot spring biofilms from Mono Lake, California
Phylogenetic analysis indicates that microbial arsenic metabolism is ancient and probably extends back to the primordial Earth. In microbial biofilms growing on the rock surfaces of anoxic brine pools fed by hot springs containing arsenite and sulfide at high concentrations, we discovered light-dependent oxidation of arsenite [As(III)] to arsenate [As(V)] occurring under anoxic...
Authors
T.R. Kulp, S.E. Hoeft, M. Asao, M.T. Madigan, J.T. Hollibaugh, J.C. Fisher, J.F. Stolz, C.W. Culbertson, L.G. Miller, R.S. Oremland
Bacterial Cycling of Methyl Halides
This chapter focuses on the monohalogenated methanes methyl chloride (MeCl) and methyl bromide (MeBr), their natural and anthropogenic sources, and their degradation by microorganisms, specifically by aerobic bacteria that can use MeBr and MeCl as sole source of carbon and energy. The biogeochemical cycle of methyl halides and the microbiology, biochemistry, genetics, and...
Authors
Hendrik Schafer, Laurence G. Miller, Ronald S. Oremland, Colin Murrell
Dissimilatory arsenate and sulfate reduction in sediments of two hypersaline, arsenic-rich soda lakes: Mono and Searles Lakes, California
A radioisotope method was devised to study bacterial respiratory reduction of arsenate in sediments. The following two arsenic-rich soda lakes in California were chosen for comparison on the basis of their different salinities: Mono Lake (∼90 g/liter) and Searles Lake (∼340 g/liter). Profiles of arsenate reduction and sulfate reduction were constructed for both lakes. Reduction of [73As...
Authors
T.R. Kulp, S.E. Hoeft, L.G. Miller, C. Saltikov, J.N. Murphy, S. Han, B. Lanoil, R.S. Oremland
Aminobacter ciceronei sp. nov. and Aminobacter lissarensis sp. nov., isolated from various terrestrial environments
The bacterial strains IMB-1T and CC495T, which are capable of growth on methyl chloride (CH3Cl, chloromethane) and methyl bromide (CH3Br, bromomethane), were isolated from agricultural soil in California fumigated with CH3Br, and woodland soil in Northern Ireland, respectively. Two pesticide-/herbicide-degrading bacteria, strains ER2 and C147, were isolated from agricultural soil in...
Authors
I.R. McDonald, P. Kampfer, E. Topp, K.L. Warner, M.J. Cox, Hancock T.L. Connell, L.G. Miller, M.J. Larkin, V. Ducrocq, C. Coulter, D.B. Harper, J.C. Murrell, R.S. Oremland
Laboratory determination of the carbon kinetic isotope effects (KIEs) for reactions of methyl halides with various nucleophiles in solution
Large carbon kinetic isotope effects (KIEs) were measured for reactions of methyl bromide (MeBr), methyl chloride (MeCl), and methyl iodide (MeI) with various nucleophiles at 287 and 306 K in aqueous solutions. Rates of reaction of MeBr and MeI with H2O (neutral hydrolysis) or Cl− (halide substitution) were consistent with previous measurements. Hydrolysis rates increased with increasing...
Authors
S.M. Baesman, L.G. Miller
Science and Products
Filter Total Items: 55
Methane oxidation and molecular characterization of methanotrophs from a former mercury mine impoundment
The Herman Pit, once a mercury mine, is an impoundment located in an active geothermal area. Its acidic waters are permeated by hundreds of gas seeps. One seep was sampled and found to be composed of mostly CO2 with some CH4 present. The δ13CH4 value suggested a complex origin for the methane: i.e., a thermogenic component plus a biological methanogenic portion. The relatively 12C...
Authors
Shaun Baesman, Laurence G. Miller, Jeremy H. Wei, Yirang Cho, Emily D. Matys, Roger E. Summons, Paula V. Welander, Ronald S. Oremland
Methane oxidation linked to chlorite dismutation
We examined the potential for CH4 oxidation to be coupled with oxygen derived from the dissimilatory reduction of perchlorate, chlorate, or via chlorite (ClO−2) dismutation. Although dissimilatory reduction of ClO−4 and ClO−3 could be inferred from the accumulation of chloride ions either in spent media or in soil slurries prepared from exposed freshwater lake sediment, neither of these...
Authors
Laurence G. Miller, Shaun M. Baesman, Charlotte I. Carlström, John D. Coates, Ronald S. Oremland
Microbiological reduction of Sb(V) in anoxic freshwater sediments
Microbiological reduction of millimolar concentrations of Sb(V) to Sb(III) was observed in anoxic sediments from two freshwater settings: (1) a Sb- and As-contaminated mine site (Stibnite Mine) in central Idaho and 2) an uncontaminated suburban lake (Searsville Lake) in the San Francisco Bay Area. Rates of Sb(V) reduction in anoxic sediment microcosms and enrichment cultures were...
Authors
Ronald S. Oremland, Thomas R. Kulp, Laurence G. Miller, Franco Braiotta, Samuel M. Webb, Benjamin D Kocar, Jodi S. Blum
A biogeochemical and genetic survey of acetylene fermentation by environmental samples and bacterial isolates
Anoxic samples (sediment and groundwater) from 13 chemically diverse field sites were assayed for their ability to consume acetylene (C2H2). Over incubation periods ranging from ˜ 10 to 80 days, selected samples from 7 of the 13 tested sites displayed significant C2H2 removal. No significant formation of ethylene was noted in these incubations; therefore, C2H2 consumption could be...
Authors
Laurence G. Miller, Shaun M. Baesman, Julie Kirshtein, Mary A. Voytek, Ronald S. Oremland
Desulfohalophilus alkaliarsenatis gen. nov., sp. nov., an extremely halophilic sulfate- and arsenate-respiring bacterium from Searles Lake, California
A haloalkaliphilic sulfate-respiring bacterium, strain SLSR-1, was isolated from a lactate-fed stable enrichment culture originally obtained from the extreme environment of Searles Lake, California. The isolate proved capable of growth via sulfate-reduction over a broad range of salinities (125–330 g/L), although growth was slowest at salt-saturation. Strain SLSR-1 was also capable of...
Authors
Jodi Switzer Blum, Thomas R. Kulp, Sukkyun Han, Brian Lanoil, Chad W. Saltikov, John F. Stolz, Laurence G. Miller, Ronald S. Oremland
Response to comment on "Arsenic(III) Fuels Anoxygenic Photosynthesis in Hot Spring Biofilms from Mono Lake, California"
Schoepp-Cothenet et al. bring a welcome conceptual debate to the question of which came first in the course of planetary biological evolution, arsenite [As(III)] oxidation or dissimilatory arsenate [As(V)] reduction. However, we disagree with their reasoning and stand by our original conclusion.
Authors
Ronald S. Oremland, John F. Stolz, Michael E. Madigan, James T. Hollibaugh, Thomas R Kulp, Shelley E. Hoeft, J. Fisher, Laurence G. Miller, Charles W. Culbertson, M. Asao
Electricity generation by anaerobic bacteria and anoxic sediments from hypersaline soda lakes
Anaerobic bacteria and anoxic sediments from soda lakes produced electricity in microbial fuel cells (MFCs). No electricity was generated in the absence of bacterial metabolism. Arsenate respiring bacteria isolated from moderately hypersaline Mono Lake (Bacillus selenitireducens), and salt-saturated Searles Lake, CA (strain SLAS-1) oxidized lactate using arsenate as the electron acceptor...
Authors
L.G. Miller, R.S. Oremland
Arsenic(III) fuels anoxygenic photosynthesis in hot spring biofilms from Mono Lake, California
Phylogenetic analysis indicates that microbial arsenic metabolism is ancient and probably extends back to the primordial Earth. In microbial biofilms growing on the rock surfaces of anoxic brine pools fed by hot springs containing arsenite and sulfide at high concentrations, we discovered light-dependent oxidation of arsenite [As(III)] to arsenate [As(V)] occurring under anoxic...
Authors
T.R. Kulp, S.E. Hoeft, M. Asao, M.T. Madigan, J.T. Hollibaugh, J.C. Fisher, J.F. Stolz, C.W. Culbertson, L.G. Miller, R.S. Oremland
Bacterial Cycling of Methyl Halides
This chapter focuses on the monohalogenated methanes methyl chloride (MeCl) and methyl bromide (MeBr), their natural and anthropogenic sources, and their degradation by microorganisms, specifically by aerobic bacteria that can use MeBr and MeCl as sole source of carbon and energy. The biogeochemical cycle of methyl halides and the microbiology, biochemistry, genetics, and...
Authors
Hendrik Schafer, Laurence G. Miller, Ronald S. Oremland, Colin Murrell
Dissimilatory arsenate and sulfate reduction in sediments of two hypersaline, arsenic-rich soda lakes: Mono and Searles Lakes, California
A radioisotope method was devised to study bacterial respiratory reduction of arsenate in sediments. The following two arsenic-rich soda lakes in California were chosen for comparison on the basis of their different salinities: Mono Lake (∼90 g/liter) and Searles Lake (∼340 g/liter). Profiles of arsenate reduction and sulfate reduction were constructed for both lakes. Reduction of [73As...
Authors
T.R. Kulp, S.E. Hoeft, L.G. Miller, C. Saltikov, J.N. Murphy, S. Han, B. Lanoil, R.S. Oremland
Aminobacter ciceronei sp. nov. and Aminobacter lissarensis sp. nov., isolated from various terrestrial environments
The bacterial strains IMB-1T and CC495T, which are capable of growth on methyl chloride (CH3Cl, chloromethane) and methyl bromide (CH3Br, bromomethane), were isolated from agricultural soil in California fumigated with CH3Br, and woodland soil in Northern Ireland, respectively. Two pesticide-/herbicide-degrading bacteria, strains ER2 and C147, were isolated from agricultural soil in...
Authors
I.R. McDonald, P. Kampfer, E. Topp, K.L. Warner, M.J. Cox, Hancock T.L. Connell, L.G. Miller, M.J. Larkin, V. Ducrocq, C. Coulter, D.B. Harper, J.C. Murrell, R.S. Oremland
Laboratory determination of the carbon kinetic isotope effects (KIEs) for reactions of methyl halides with various nucleophiles in solution
Large carbon kinetic isotope effects (KIEs) were measured for reactions of methyl bromide (MeBr), methyl chloride (MeCl), and methyl iodide (MeI) with various nucleophiles at 287 and 306 K in aqueous solutions. Rates of reaction of MeBr and MeI with H2O (neutral hydrolysis) or Cl− (halide substitution) were consistent with previous measurements. Hydrolysis rates increased with increasing...
Authors
S.M. Baesman, L.G. Miller