Skip to main content
U.S. flag

An official website of the United States government

Publications

Filter Total Items: 2698

Why study geysers?

Scientific research for more than two centuries has improved our understanding of Earth’s geysers. This knowledge provides insights into volcanic processes, the origin and environmental limits of life on Earth and potentially Mars, and on geysers on icy outer solar system satellites. Continued scientific research will help us understand and protect these natural wonders that attract millions of to
Authors
Shaul Hurwitz, Michael Manga, Kathleen Campbell, Carolina Munoz-Saez, Eva Eibl

Repeating caldera collapse events constrain fault friction at the kilometer scale

Fault friction is central to understanding earthquakes, yet laboratory rock mechanics experiments are restricted to, at most, meter scale. Questions thus remain as to the applicability of measured frictional properties to faulting in situ. In particular, the slip-weakening distance dcdc strongly influences precursory slip during earthquake nucleation, but scales with fault roughness and is challen
Authors
Paul Segall, Kyle R. Anderson

The products of primary magma fragmentation finally revealed by pumice agglomerates

Following rapid decompression in the conduit of a volcano, magma breaks into ash- to block-sized fragments, powering explosive sub-Plinian and Plinian eruptions that may generate destructive pyroclastic falls and flows. It is thus crucial to assess how magma breaks up into fragments. This task is difficult, however, because of the subterranean nature of the entire process and because the original
Authors
Thomas Giachetti, Kathy Trafton, Joshua Wiejaczka, James E. Gardner, James M. Watkins, Tom Shea, Heather M. Wright

Long-term year-round observations of magmatic CO2 emissions on Mammoth Mountain, California, USA

Diffuse emission of magmatic CO2 is one of the main indicators of volcanic unrest at Mammoth Mountain, but the presence of deep seasonal snowpack at the site has hindered year-round CO2 flux observations. A permanent eddy covariance station was established at the largest area of diffuse CO2 degassing on Mammoth Mountain (Horseshoe Lake tree kill) that measured CO2 fluxes (Fc) and meteorological pa
Authors
Jennifer L. Lewicki

Seismic monitoring during crises at the NEIC in support of the ANSS

Over the past two decades, the U.S. Geological Survey (USGS) National Earthquake Information Center (NEIC) has overcome many operational challenges. These range from minor disruptions, such as power outages, to significant operational changes, including system reconfiguration to handle unique earthquake sequences and the need to handle distributed work during a pandemic. Our ability to overcome cr

Authors
Paul S. Earle, Harley M. Benz, William L. Yeck, Gavin P. Hayes, Michelle Guy, John Patton, David Kragness, David B. Mason, Brian Shiro, Emily Wolin, John Bellini, Jana Pursley, Robert Lorne Sanders

Preliminary assessment of the wave generating potential from landslides at Barry Arm, Prince William Sound, Alaska

We simulated the concurrent rapid motion of landslides on an unstable slope at Barry Arm, Alaska. Movement of landslides into the adjacent fjord displaced fjord water and generated a tsunami, which propagated out of Barry Arm. Rather than assuming an initial sea surface height, velocity, and location for the tsunami, we generated the tsunami directly using a model capable of simulating the dynamic
Authors
Katherine R. Barnhart, Ryan P. Jones, David L. George, Jeffrey A. Coe, Dennis M. Staley

The petrologic and degassing behavior of sulfur and other magmatic volatiles from the 2018 eruption of Kīlauea, Hawaiʻi: Melt concentrations, magma storage depths, and magma recycling

Kīlauea Volcano’s 2018 lower East Rift Zone (LERZ) eruption produced exceptionally high lava effusion rates and record-setting SO2 emissions. The eruption involved a diverse range of magmas, including primitive basalts sourced from Kīlauea’s summit reservoirs. We analyzed LERZ matrix glasses, melt inclusions, and host minerals to identify melt volatile contents and magma storage depths. The LERZ g
Authors
Allan Lerner, Paul J. Wallace, Thomas Shea, Adrien Mourey, Peter J. Kelly, Patricia Nadeau, Tamar Elias, Christoph Kern, Laura E. Clor, Cheryl Gansecki, R. Lopaka Lee, Lowell Moore, Cynthia A. Werner

Time-evolving surface and subsurface signatures of Quaternary volcanism in the Cascades Arc: Reply

No abstract available.
Authors
Daniel O'Hara, Leif Karlstrom, David W. Ramsey

Identification of low-frequency earthquakes on the San Andreas fault with deep learning

Low-frequency earthquakes are a seismic manifestation of slow fault slip. Their emergent onsets, low amplitudes, and unique frequency characteristics make these events difficult to detect in continuous seismic data. Here, we train a convolutional neural network to detect low-frequency earthquakes near Parkfield, CA using the catalog of Shelly (2017), https://doi.org/10.1002/2017jb014047 as trainin
Authors
A. M. Thomas, A. Inbal, J. Searcy, David R. Shelly, R. Bürgmann

The 2011-2019 Long Valley Caldera inflation: New insights from separation of superimposed geodetic signals and 3D modeling

Increasingly accurate, and spatio-temporally dense, measurements of Earth surface movements enable us to identify multiple deformation patterns and highlight the need to properly characterize the related source processes. This is particularly important in tectonically active areas, where deformation measurement is crucial for monitoring ongoing processes and assessing future hazard. Long Valley Ca
Authors
F. Silverii, F. Pulvirenti, Emily Montgomery-Brown, A. Borsa, W. Neely

When hazard avoidance is not an option: Lessons learned from monitoring the postdisaster Oso landslide, USA

On 22 March 2014, a massive, catastrophic landslide occurred near Oso, Washington, USA, sweeping more than 1 km across the adjacent valley flats and killing 43 people. For the following 5 weeks, hundreds of workers engaged in an exhaustive search, rescue, and recovery effort directly in the landslide runout path. These workers could not avoid the risks posed by additional large-scale slope collaps
Authors
Mark E. Reid, Jonathan W. Godt, Richard G LaHusen, Stephen L Slaughter, Thomas C. Badger, Brian D. Collins, William Schulz, Rex L. Baum, Jeffrey A. Coe, Edwin L Harp, Kevin M. Schmidt, Richard M. Iverson, Joel B. Smith, Ralph Haugerud, David L. George

Material properties and triggering mechanisms of an andesitic lava dome collapse at Shiveluch Volcano, Kamchatka, Russia, revealed using the finite element method

Shiveluch volcano (Kamchatka, Russia) is an active andesitic volcano with a history of explosive activity, dome extrusion, and structural collapse during the Holocene. The most recent major (> 1 km3) dome collapse occurred in November 1964, producing a ~ 1.5 km3 debris avalanche that traveled over 15 km from the vent and triggered a phreatic explosion followed by a voluminous (~ 0.8 km3) eruption
Authors
Cory S Wallace, Lauren N. Schaefer, Marlène C. Villeneuve