Skip to main content
U.S. flag

An official website of the United States government

Earthquake Science Center

The Earthquake Science Center has been the flagship research center of the USGS in the western United States for more than 50 years. It is the largest USGS research center in the West and houses extensive laboratories, scientific infrastructure, and research facilities.

News

Five Years After the Ridgecrest Earthquake Sequence

Five Years After the Ridgecrest Earthquake Sequence

USGS Seeks Earthquake Hazards Research Proposals

USGS Seeks Earthquake Hazards Research Proposals

Earthquakes can strike faster than a New York minute – What to do when the ground shakes...

Earthquakes can strike faster than a New York minute – What to do when the ground shakes...

Publications

Global variability of the composition and temperature at the 410-km discontinuity from receiver function analysis of dense arrays

Seismic boundaries caused by phase transitions between olivine polymorphs in Earth's mantle provide thermal and compositional markers that inform mantle dynamics. Seismic studies of the mantle transition zone often use either global averaging with sparse arrays or regional sampling from a single dense array. The intermediate approach of this study utilizes many densely spaced seismic arrays distri
Authors
Margaret Elizabeth Glasgow, Hankui K. Zhang, Brandon Schmandt, Wen-Yi Zhou, Jinchi Zhang

Relatively stable pressure effects and time-increasing thermal contraction control Heber geothermal field deformation

Due to geological complexities and observational gaps, it is challenging to identify the governing physical processes of geothermal field deformation including ground subsidence and earthquakes. In the west and east regions of the Heber Geothermal Field (HGF), decade-long subsidence was occurring despite injection of heat-depleted brines, along with transient reversals between uplift and subsidenc
Authors
Guoyan Jiang, Andrew Barbour, Robert John Skoumal, Kathryn Zerbe Materna, Aren Crandall-Bear

Uncertainty in ground-motion-to-intensity conversions significantly affects earthquake early warning alert regions

We examine how the choice of ground‐motion‐to‐intensity conversion equations (GMICEs) in earthquake early warning (EEW) systems affects resulting alert regions. We find that existing GMICEs can underestimate observed shaking at short rupture distances or overestimate the extent of low‐intensity shaking. Updated GMICEs that remove these biases would improve the accuracy of alert regions for the Sha
Authors
Jessie Saunders, Annemarie S. Baltay, Sarah E. Minson, Maren Böse