Geologic map of the Dog River and northern part of the Badger Lake 7.5′ quadrangles, Hood River County, Oregon
The Dog River and northern part of the Badger Lake 7.5' quadrangles encompasses an area of ~201 km2 (77.6 mi2) of the High Cascades of north-central Oregon, lying across the eastern slopes of Mount Hood volcano (Figure 1-1; Plate 1; referred to herein as Dog River–Badger Lake area). Mount Hood, known as Wy’east to Native Americans, is Oregon’s tallest peak (3,427 m [11,241 ft]). The volcano has erupted episodically for the past 500,000 years, experiencing two major eruptive periods during the last 1,500 years (Scott and others, 1997a; Scott and others, 2003; Scott and Gardner, 2017). Cascade Range volcanism and structural development in the area dates back longer, with eruptive activity dating from latest Miocene to recent time; part of that volcano-tectonic record is detailed by new high-resolution geologic mapping presented here.
The geology of the Dog River–Badger Lake area was mapped by the Oregon Department of Geology and Mineral Industries (DOGAMI) between 2017 and 2020, in collaboration with geoscientists from the U. S. Geological Survey Cascade Volcano Observatory (USGS CVO) and Hamilton College, New York. The primary objective of this investigation is to provide an updated and spatially accurate geologic framework for the Dog River–Badger Lake area as part of a multi-year study of the geology of the larger Middle Columbia Basin (Figure 1-1, Figure 1-2). Additional key objectives of this project are to: 1) determine the geologic history of volcanic rocks in this part of the northern Oregon Cascade Range, including lava flows and volcaniclastic deposits erupted from Middle Pleistocene to Holocene Mount Hood volcano; 2) provide significant new details about the structure and fault history along the northern segment of the High Cascades intra-arc graben (Hood River graben); and 3) better understand geologic hazards in the region, related to earthquakes, volcanoes, and landslides. New detailed geologic data presented here also provides a basis for future geologic, geohydrologic, and geohazard studies in the greater Middle Columbia Basin. Detailed geologic mapping in this part of the Middle Columbia Basin is a high priority of the Oregon Geologic Map Advisory Committee (OGMAC), supported in part by grants from the STATEMAP component of the USGS National Cooperative Geologic Mapping Program (G17AC00210, G19AC00160). Additional funds were provided by the State of Oregon.
The core products of this study are this report, an accompanying geologic map and cross sections (Plate 1), an Esri ArcGIS™ geodatabase, and Microsoft Excel® spreadsheets tabulating point data for geochemistry, geochronology, magnetic polarity, orientation points, and well data. The geodatabase presents the new geologic mapping in a digital format consistent with the USGS National Cooperative Geologic Mapping Program Geologic Map Schema (GeMS) (U.S. Geological Survey National Cooperative Geologic Mapping Program, 2020). This geodatabase contains spatial information, including geologic polygons, contacts, structures, geochemistry, geochronology, magnetic observation, orientation points, and well data, as well as data about each geologic unit such as age, lithology, mineralogy, and structure. Digitization at scales of 1:8,000 or better was accomplished using a combination of high-resolution lidar topography and imagery. Surficial and bedrock geologic units contained in the geodatabase are depicted on the Plate 1 at a scale of 1:24,000. Both the geodatabase and geologic map are supported by this report describing the geology in detail.
Citation Information
Publication Year | 2020 |
---|---|
Title | Geologic map of the Dog River and northern part of the Badger Lake 7.5′ quadrangles, Hood River County, Oregon |
Authors | Jason D. McClaughry, William E. Scott, Carlie J. M. Duda, Richard M. Conrey |
Publication Type | Report |
Publication Subtype | State or Local Government Series |
Series Title | Geological Map |
Series Number | 126 |
Index ID | 70218021 |
Record Source | USGS Publications Warehouse |
USGS Organization | Volcano Science Center |