Life in Total Darkness–Investigating Underwater Cave Ecosystems
For more than 30 years, scientists have known that remarkably complex ecosystems thrive within underwater coastal caves, habitats that naturally contain no light and very little food or oxygen. Yet, almost nothing is known about the ecology of these systems.
This article is part of the October-November 2018 issue of the Sound Waves newsletter.
How does life exist in total darkness, in a habitat with little oxygen or food?
For more than 30 years, scientists have known that remarkably complex ecosystems thrive within underwater coastal caves, habitats that naturally contain no light and very little food or oxygen. Yet, almost nothing is known about the ecology of these systems.
John Pohlman of the USGS Woods Hole Coastal and Marine Science Center and David Brankovits, a post-doctoral scholar with the USGS and the Woods Hole Oceanographic Institution (WHOI), are providing answers to these questions. The two are using sophisticated cave diving techniques and sampling devices created at the USGS to learn more about what types of life exist in underwater caves along limestone and volcanic coastlines. With this information, they are developing an understanding of the processes that allow life to flourish within the submerged darkness.
So far, their research has been conducted along the Yucatan Peninsula of Mexico, where over 1,000 km (about 621 miles) of cave passages within the limestone coastline have been mapped. By analyzing the chemical and isotopic content of water samples and animals collected from within the caves, they have shown that dissolved methane gas and other dissolved organic materials that trickle in from the jungle floor are an important component of the cave-adapted animal’s diet. These dissolved materials though, are not directly accessible to the animals living there—the microbes in particular—unless they mix with oxygen. John and David have shown that oxygen enters the system from beneath, with the seawater, and from above through sinkholes that connect to the caves. Once the dissolved materials have mixed with oxygen, bacteria are able to grow. In turn, higher-level organisms, like crustaceans, feed on the bacteria, which form the basis of the food web for the Yucatan caves.
Recently, John and David had the unique opportunity to conduct a similar study in the Atlantida Tunnel, the world’s longest submerged basaltic lava tube that extends beneath the coastline of the Island of Lanzarote in the Canary Islands. Using the same approach as in the Yucatan Peninsula, they collected water samples and animals that they are now analyzing for their stable isotopic composition to construct a model of the food web for lava-tube caves. However, because the Canary Islands are dry and lack dense tropical vegetation found in the Yucatan, they hypothesize the microbial loop in the Atlantida Tunnel is supported by material that originates in the ocean and washes into the lava tube. The study is being conducted in collaboration with Lanzarote and Chinijo Islands Unesco Global Geopark and Dr. Alejandro Martínez García (Water Research Institute IRSA-CNR).
These are very delicate ecosystems; slight changes to the environment can have devastating consequences to the animals inhabiting the area. Thus, as John puts it, “the cave-adapted animals are the metaphorical canaries in the coal mine for the condition of water quality.” In other words, these sensitive life forms serve as early warning indicators for habitat degradation caused by pollution, land-use change, and the effects of climate change. Similar environments are found within the Florida platform and the Hawaiian Islands, where sea-level rise and human activity are impacting the condition of the groundwater. John and David hope to take what they have learned from the pristine settings in Yucatan and the Canary Islands and apply these principles to U.S. coastal margins to understand how to protect and preserve these unusual, but globally distributed, ecosystems.
Interested in learning more? View the YouTube video “This Cryptic Underwater Maze Holds Life That Survives on Methane.” Also, their research from the Yucatan Peninsula was recently published in the journal Nature Communications.
Get Our News
These items are in the RSS feed format (Really Simple Syndication) based on categories such as topics, locations, and more. You can install an RSS reader browser extension, software, or use a third-party service to receive immediate news updates depending on the feed that you have added. If you click the feed links below, they may look strange because they are simply XML code. An RSS reader can easily read this code and push out a notification to you when something new is posted to our site.