Shallow earthquakes are between 0 and 70 km deep; intermediate earthquakes, 70 - 300 km deep; and deep earthquakes, 300 - 700 km deep. In general, the term "deep-focus earthquakes" is applied to earthquakes deeper than 70 km. All earthquakes deeper than 70 km are localized within great slabs of lithosphere that are sinking into the Earth's mantle.
The evidence for deep-focus earthquakes was discovered in 1922 by H.H. Turner of Oxford, England. Previously, all earthquakes were considered to have shallow focal depths. The existence of deep-focus earthquakes was confirmed in 1931 from studies of the seismograms of several earthquakes, which in turn led to the construction of travel-time curves for intermediate and deep earthquakes.
The most obvious indication on a seismogram that a large earthquake has a deep focus is the small amplitude, or height, of the recorded surface waves and the uncomplicated character of the P and S waves. Although the surface-wave pattern does generally indicate that an earthquake is either shallow or may have some depth, the most accurate method of determining the focal depth of an earthquake is to read a depth phase recorded on the seismogram. The depth phase is the characteristic phase pP-a P wave reflected from the surface of the Earth at a point relatively near the hypocenter. At distant seismograph stations, the pP follows the P wave by a time interval that changes slowly with distance but rapidly with depth. This time interval, pP-P (pP minus P), is used to compute depth-of-focus tables. Using the time difference of pP-P as read from the seismogram and the distance between the epicenter and the seismograph station, the depth of the earthquake can be determined from published travel-time curves or depth tables.
Another seismic wave used to determine focal depth is the sP phase - an S wave reflected as a P wave from the Earth's surface at a point near the epicenter. This wave is recorded after the pP by about one-half of the pP-P time interval. The depth of an earthquake can be determined from the sP phase in the same manner as the pP phase by using the appropriate travel-time curves or depth tables for sP.
If the pP and sP waves can be identified on the seismogram, an accurate focal depth can be determined.
by William Spence, Stuart A. Sipkin, and George L. Choy
Earthquakes and Volcanoes
Volume 21, Number 1, 1989