Skip to main content
U.S. flag

An official website of the United States government

Publications

Filter Total Items: 2579

Observed and simulated ground motions in the San Bernardino basin region for the Hector Mine, California, earthquake

During the MW 7.1 Hector Mine earthquake, peak ground velocities recorded at sites in the central San Bernardino basin region were up to 2 times larger and had significantly longer durations of strong shaking than sites just outside the basin. To better understand the effects of 3D structure on the long-period ground-motion response in this region, we have performed finite-difference simulations f
Authors
R.W. Graves, D. J. Wald

Stress field variations in the Swiss Alps and the northern Alpine foreland derived from inversion of fault plane solutions

This study is devoted to a systematic analysis of the state of stress of the central European Alps and northern Alpine foreland in Switzerland based on focal mechanisms of 138 earthquakes with magnitudes between 1 and 5. The most robust feature of the results is that the azimuth of the minimum compressive stress, S3, is generally well constrained for all data subsets and always lies in the NE quad
Authors
U. Kastrup, M.L. Zoback, N. Deichmann, Kenneth F. Evans, D. Giardini, A.J. Michael

Pedogenic silica accumulation in chronosequence soils, southern California

Chronosequential analysis of soil properties has proven to be a valuable approach for estimating ages of geomorphic surfaces where no independent age control exists. In this study we examined pedogenic silica as an indicator of relative ages of soils and geomorphic surfaces, and assessed potential sources of the silica. Pedogenic opaline silica was quantified by tiron (4,5-dihydroxy-1,3-benzene-di
Authors
K.J. Kendrick, R.C. Graham

Evidence for liquefaction identified in peeled slices of Holocene deposits along the Lower Columbia River, Washington

Peels made from 10 geoslices beneath a riverbank at Washington's Hunting Island, 45 km inland from the Pacific coast, aid in identifying sand that liquefied during prehistoric earthquakes of estimated magnitude 8-9 at the Cascadia subduction zone. Each slice was obtained by driving sheetpile and a shutter plate to depths of 6-8 m. The resulting sample, as long as 8 m, had a trapezoidal cross secti
Authors
K. Takada, B.F. Atwater

Prediction of nonlinear soil effects

Mathematical models of soil nonlinearity in common use and recently developed nonlinear codes compared to investigate the range of their predictions. We consider equivalent linear formulations with and without frequency-dependent moduli and damping ratios and nonlinear formulations for total and effective stress. Average velocity profiles to 150 m depth with midrange National Earthquake Hazards Re
Authors
S. Hartzell, L.F. Bonilla, R. A. Williams

Probabilistic seismic hazard analysis for Sumatra, Indonesia and across the Southern Malaysian Peninsula

The ground motion hazard for Sumatra and the Malaysian peninsula is calculated in a probabilistic framework, using procedures developed for the US National Seismic Hazard Maps. We constructed regional earthquake source models and used standard published and modified attenuation equations to calculate peak ground acceleration at 2% and 10% probability of exceedance in 50 years for rock site conditi
Authors
M.D. Petersen, J. Dewey, S. Hartzell, C. Mueller, S. Harmsen, A. D. Frankel, K. Rukstales

Surface rupture on the Denali fault interpreted from tree damage during the 1912 Delta River Mw 7.2–7.4 earthquake: Implications for the 2002 Denali fault earthquake slip distribution

During the 3 November 2002 Denali fault earthquake, surface rupture propagated through a small, old-growth forest in the Delta River valley and damaged many trees growing on the fault. Damage was principally the result of fault offset of tree roots and tilting of trees. Some trees were split by surface faults that intersected the base of their trunks or large taproots. A few trees appear to have b
Authors
G. Carver, G. Plafker, M. Metz, L. Cluff, B. Slemmons, E. Johnson, J. Roddick, S. Sorensen

Inverse kinematic and forward dynamic models of the 2002 Denali fault earthquake, Alaska

We perform inverse kinematic and forward dynamic models of the M 7.9 2002 Denali fault, Alaska, earthquake to shed light on the rupture process and dynamics of this event, which took place on a geometrically complex fault system in central Alaska. We use a combination of local seismic and Global Positioning System (GPS) data for our kinematic inversion and find that the slip distribution of this e
Authors
D. D. Oglesby, Douglas S. Dreger, R. A. Harris, N. Ratchkovski, R. Hansen

Rupture process of the M 7.9 Denali fault, Alaska, earthquake: Subevents, directivity, and scaling of high-frequency ground motions

Displacement waveforms and high-frequency acceleration envelopes from stations at distances of 3-300 km were inverted to determine the source process of the M 7.9 Denali fault earthquake. Fitting the initial portion of the displacement waveforms indicates that the earthquake started with an oblique thrust subevent (subevent # 1) with an east-west-striking, north-dipping nodal plane consistent with
Authors
A. Frankel

Depth to the Juan de Fuca slab beneath the Cascadia subduction margin– A 3-D model for sorting earthquakes

We present an updated model of the Juan de Fuca slab beneath southern British Columbia, Washington, Oregon, and northern California, and use this model to separate earthquakes occurring above and below the slab surface. The model is based on depth contours previously published by Fluck and others (1997). Our model attempts to rectify a number of shortcomings in the original model and update it wit
Authors
Patricia A. McCrory, J. Luke Blair, David H. Oppenheimer, Stephen R. Walter

Surface rupture and slip distribution of the Denali and Totschunda faults in the 3 November 2002 M 7.9 earthquake, Alaska

The 3 November 2002 Denali fault, Alaska, earthquake resulted in 341 km of surface rupture on the Susitna Glacier, Denali, and Totschunda faults. The rupture proceeded from west to east and began with a 48-km-long break on the previously unknown Susitna Glacier thrust fault. Slip on this thrust averaged about 4 m (Crone et al., 2004). Next came the principal surface break, along 226 km of the Dena
Authors
Peter J. Haeussler, David P. Schwartz, Timothy E. Dawson, Heidi D. Stenner, James J. Lienkaemper, Brian L. Sherrod, Francesca R. Cinti, Paola Montone, Patricia Craw, Anthony J. Crone, Stephen F. Personius

Seismic velocity models for the Denali fault zone along the Richardson Highway, Alaska

Crustal-scale seismic-velocity models across the Denali fault zone along the Richardson Highway show a 50-km-thick crust, a near vertical fault trace, and a 5-km-wide damage zone associated with the fault near Trans-Alaska Pipeline Pump Station 10, which provided the closest strong ground motion recordings of the 2002 Denali fault earthquake. We compare models, derived from seismic reflection and
Authors
T. M. Brocher, G. S. Fuis, W. J. Lutter, N.I. Christensen, N. A. Ratchkovski