Skip to main content
U.S. flag

An official website of the United States government

Aftershock seismicity of the 2010 Maule Mw=8.8 Chile, earthquake: Correlation between co-seismic slip models and aftershock distribution?

June 12, 2012

The 27 February 2010 Maule, Chile (Mw=8.8) earthquake is one of the best instrumentally observed subduction zone megathrust events. Here we present locations, magnitudes and cumulative equivalent moment of the first -2 months of aftershocks, recorded on a temporary network deployed within 2 weeks of the occurrence of the mainshock. Using automatically-determined onset times and a back projection approach for event association, we are able to detect over 30,000 events in the time period analyzed. To further increase the location accuracy, we systematically searched for potential S-wave arrivals and events were located in a regional 2D velocity model. Additionally, we calculated regional moment tensors to gain insight into the deformation history of the aftershock sequence. We find that the aftershock seismicity is concentrated between 40 and 140 km distance from the trench over a depth range of 10 to 35 km. Focal mechanisms indicate a predominance of thrust faulting, with occasional normal faulting events. Increased activity is seen in the outer-rise region of the Nazca plate, predominantly in the northern part of the rupture area. Further down-dip, a second band of clustered seismicity, showing mainly thrust motion, is located at depths of 40–45 km. By comparing recent published mainshock source inversions with our aftershock distribution, we discriminate slip models based on the assumption that aftershocks occur in areas of rapid transition between high and low slip, surrounding high-slip regions of the mainshock.

Publication Year 2012
Title Aftershock seismicity of the 2010 Maule Mw=8.8 Chile, earthquake: Correlation between co-seismic slip models and aftershock distribution?
DOI 10.1029/2012GL051308
Authors A. Rietbrock, I. Ryder, G. Hayes, C. Haberland, D. Comte, S. Roecker
Publication Type Article
Publication Subtype Journal Article
Series Title Geophysical Research Letters
Index ID 70038477
Record Source USGS Publications Warehouse
USGS Organization Geologic Hazards Science Center