INTRODUCTION
The tertiary limestone aquifer system of the southeastern United States is a sequence of carbonate rocks referred to as the Floridan aquifer in Florida and the principal artesian aquifer in Georgia, Alabama, and South Carolina. More than 3 billion gallons of water are pumped daily from the limestone aquifer; and the system is the principal source of municipal, industrial, and agricultural water supply in south Georgia and most of Florida.
The aquifer system includes units of Paleocene to early Miocene age that combine to form a continuous carbonate sequence that is hydraulically connected in varying degrees. In a small area near Brunswick, Ga., a thin sequence of rocks of Late Cretaceous age is part of the system. In and directly downdip from much of the outcrop area, the system consists of one continuous permeable unit. Further downdip the aquifer system generally consists of two major permeable zones separated by a less-permeable unit of highly variable hydraulic properties (very leaky to virtually nonleaky). Conditions for the system vary from unconfined to confined depending upon whether the argillaceous Miocene and younger rocks that form the upper confining unit have been removed by erosion.
This report is one of a series of preliminary products depicting the hydrogeologic framework, water chemistry, and hydrology of the aquifer system. The map shows the distribution of chloride ions in water from the upper permeable zone of the limestone aquifer system. The upper permeable zone consists of several formations, primarily the Tampa, Suwannee, Ocala, and Avon Park Limestones (Miller 1981a, b).
Chloride concentrations of water within the upper permeable zone vary from nearly zero in recharge areas to many thousands of milligrams per liter (mg/L) in coastal discharge areas. Where the aquifer system discharges into the sea, the upper permeable zone contains increasing amounts of seawater. In these areas, wells that fully penetrate the upper permeable zone will yield water with chloride concentrations that approach that of seawater, about 19500 mg/L.