Skip to main content
U.S. flag

An official website of the United States government

Comment on “Isotopic fractionation between Fe(III) and Fe(II) in aqueous solutions” by Clark Johnson et al., [Earth Planet. Sci. Lett. 195 (2002) 141–153]

January 1, 2003

In a recent contribution [1], Johnson et al. reported the equilibrium isotope fractionation factor between dissolved Fe(II) and Fe(III) in aqueous solutions at pH=2.5 and 5.5. They suggest that because the iron isotope fractionation observed in their experiments spans virtually the entire range observed in sedimentary rocks, Fe(II)–Fe(III) aqueous speciation may play a major role in determining iron isotope variations in nature where Fe(II) and Fe(III) can become physically separated. They discounted earlier conclusions by us and others [2] ;  [3] that significant equilibrium fractionation between specific coexisting Fe(II)- or Fe(III)-aqueous complexes (e.g., between aqueous Fe(II)(OH)x(aq)and Fe(II)(aq) ion) is capable of producing iron isotope contrasts that can be preserved in nature. This is an important contribution not only because the authors recognize the importance of abiotic equilibrium iron isotope fractionation in nature in contrast to previous assertions [4], but also because it will help to focus discussion on the development and evaluation of experimental approaches that can reveal abiotic fractionation mechanisms. However, in this Comment we propose that the experiments presented in this paper cannot be interpreted as straightforwardly as Johnson et al. contend. In particular, we show that in one of their critical experiments attainment of either isotope mass balance or equilibrium was not demonstrated, and thus the results of that experiment cannot be used to calculate an Fe(II)–Fe(III) equilibrium fractionation factor.

Publication Year 2003
Title Comment on “Isotopic fractionation between Fe(III) and Fe(II) in aqueous solutions” by Clark Johnson et al., [Earth Planet. Sci. Lett. 195 (2002) 141–153]
DOI 10.1016/S0012-821X(02)01091-9
Authors Thomas D. Bullen, Arthur F. White, Cyril W. Childs
Publication Type Article
Publication Subtype Journal Article
Series Title Earth and Planetary Science Letters
Index ID 70184627
Record Source USGS Publications Warehouse
USGS Organization Toxic Substances Hydrology Program