Skip to main content
U.S. flag

An official website of the United States government

Community metabolism during early development of a restored wetland

January 1, 2003

Productivity is an important ecological function of any natural system and may be quite high in wetlands. Restoration of productive wetlands may play a key role in re-establishing ecological function to portions of the vast areas of wetlands (roughly 86%) drained and otherwise altered in the United States over the past two centuries. A restored wetland at the Montezuma National Wildlife Refuge (upstate New York, USA) was examined to determine if ecological function (i.e., productivity), as well as biotic structure, was restored. Physicochemical conditions and both aquatic and terrestrial productivity were measured at the restoration site and compared with rates and conditions in a reference wetland. Gross aquatic community production rates (based on diurnal oxygen curves) were similar at each site (1,679 and 2,311 g O2 · m−2 · yr−1) and within the range expected for the habitat. Terrestrial Net Aboveground Primary Production rates (measured by monthly biomass changes) (2,400 and 2,500 g dry wt. · m−2 · yr−1) were also similar between sites when tree and herb production were combined. Aquatic respiration rates (3,704 and 4,552 g O2 · m−2· yr−1) were also similar but high, typically more than twice as large as gross aquatic production. As a result, net aquatic production rates at both sites were usually negative, indicating that these small wetlands are organic matter sinks that satisfy aquatic respiration by consumption of both autochthonous aquatic production and imported terrestrial production. They enhance diversity of the local landscape by producing populations of aquatic consumers that cannot be supported by aquatic production alone. Typical wetland conditions and processes developed quickly after restoration, but differences in biotic community structure indicate that observed rates of production and respiration at both sites were maintained by flow through different foodweb pathways. Despite the relatively high process rates, and successional progress of the restoration site is expected to be slow.

Publication Year 2003
Title Community metabolism during early development of a restored wetland
DOI 10.1672/0277-5212(2003)023[0035:CMDEDO]2.0.CO;2
Authors J.E. McKenna
Publication Type Article
Publication Subtype Journal Article
Series Title Wetlands
Index ID 70025933
Record Source USGS Publications Warehouse
USGS Organization Great Lakes Science Center
Was this page helpful?