Skip to main content
U.S. flag

An official website of the United States government

Effects of sea-level rise and pumpage elimination on saltwater intrusion in the Hilton Head Island area, South Carolina, 2004-2104

August 13, 2010

Saltwater intrusion of the Upper Floridan aquifer has been observed in the Hilton Head area, South Carolina since the late 1970s and currently affects freshwater supply. Rising sea level in the Hilton Head Island area may contribute to the occurrence of and affect the rate of saltwater intrusion into the Upper Floridan aquifer by increasing the hydraulic gradient and by inundating an increasing area with saltwater, which may then migrate downward into geologic units that presently contain freshwater. Rising sea level may offset any beneficial results from reductions in groundwater pumpage, and thus needs to be considered in groundwater-management decisions. A variable-density groundwater flow and transport model was modified from a previously existing model to simulate the effects of sea-level rise in the Hilton Head Island area. Specifically, the model was used to (1) simulate trends of saltwater intrusion from predevelopment to the present day (1885-2004) and evaluate the conceptual model, (2) project these trends from the present day into the future based on different potential rates of sea-level change, and (3) evaluate the relative influences of pumpage and sea-level rise on saltwater intrusion.

Four scenarios were simulated for 2004-2104: (1) continuation of the estimated sea-level rise rate over the last century, (2) a doubling of the sea-level rise, (3) a cessation of sea-level rise, and (4) continuation of the rate over the last century coupled with an elimination of all pumpage. Results show that, if present-day (year 2004) pumping conditions are maintained, the extent of saltwater in the Upper Floridan aquifer will increase, whether or not sea level continues to rise. Furthermore, if all pumpage is eliminated and sea level continues to rise, the simulated saltwater extent in the Upper Floridan aquifer is reduced. These results indicate that pumpage is a strong driving force for simulated saltwater intrusion, more so than sea-level rise at current rates. However, results must be considered in light of limitations in the model, including, but not limited to uncertainty in field data, the conceptual model, the physical properties and representation of the hydrogeologic framework, and boundary and initial conditions, as well as uncertainty in future conditions, such as the rate of sea-level rise.

Publication Year 2010
Title Effects of sea-level rise and pumpage elimination on saltwater intrusion in the Hilton Head Island area, South Carolina, 2004-2104
DOI 10.3133/sir20095251
Authors Dorothy F. Payne
Publication Type Report
Publication Subtype USGS Numbered Series
Series Title Scientific Investigations Report
Series Number 2009-5251
Index ID sir20095251
Record Source USGS Publications Warehouse
USGS Organization South Atlantic Water Science Center