Skip to main content
U.S. flag

An official website of the United States government

Estimating discharge of shallow groundwater by transpiration from greasewood in the Northern Great Basin

August 1, 1993

Evapotranspiration from bare soil and phreatophytes is a principal mechanism of groundwater discharge in arid and semiarid regions of the midwestern and western United States including the Great Basin. The imbalance between independent estimates of groundwater recharge from precipitation and of groundwater discharge based on estimates of groundwater evapotranspiration leads to large uncertainties in groundwater budgets. Few studies have addressed this problem. Energy budget micrometeorological field studies were conducted in a stand of sparse-canopy greasewood growing in an area of shallow groundwater in the western Great Basin during the summer of 1989. The data were used to calculate above-canopy fluxes of sensible and latent heat using the energy budget-Bowen ratio method. The calculated energy budget fluxes were used, with soil surface and plant canopy temperature measurements, to calibrate and apply a two-component, energy-combination model that partitions the energy and heat fluxes between bare soil and the canopy. This permitted the separation of evaporation from the soil and transpiration from greasewood. The calibrated model was used to estimate daily transpiration of groundwater by greasewood growing in an area with a depth to water of about 2 m. The daily rate of groundwater discharge by transpiration during July and August was estimated to be 2.4 mm. A period of 100 days for groundwater discharge at this rate was assumed to estimate an annual discharge of groundwater of 24 cm at the study site.

Publication Year 1993
Title Estimating discharge of shallow groundwater by transpiration from greasewood in the Northern Great Basin
DOI 10.1029/93WR00930
Authors William D. Nichols
Publication Type Article
Publication Subtype Journal Article
Series Title Water Resources Research
Index ID 70187466
Record Source USGS Publications Warehouse