Skip to main content
U.S. flag

An official website of the United States government

Estimation of Mars radar backscatter from measured surface rock populations

January 1, 1998

Reanalysis of rock population data at the Mars Viking Lander sites has yielded updated values of rock fractional surface coverage (about 0.16 at both sites, including outcrops) and new estimates of rock burial depths and axial ratios. These data are combined with a finite difference time domain (FDTD) numerical scattering model to estimate diffuse backscatter due to rocks at both the Lander l (VL1) and Lander 2 (VL2) sites. We consider single scattering from both surface and subsurface objects of various shapes, ranging from an ideal sphere to an accurate digitized model of a terrestrial rock. The FDTD cross-section calculations explicitly account for the size, shape, composition, orientation, and burial state of the scattering object, the incident wave angle and polarization, and the composition of the surface. We calculate depolarized specific cross sections at 12.6 cm wavelength due to lossless rock-like scatterers of about 0.014 at VL1 and 0.023 at VL2, which are comparable to the measured ranges of 0.019-0.032 and 0.012-0.018, respectively. We also discuss the variation of the diffuse cross section as the local angle of incidence, ??i, changes. Numerical calculations for a limited set of rock shapes indicate a marked difference between the angular backscattering behavior of wavelength-scale surface and subsurface rocks: while subsurface rocks scatter approximately as a cosine power law, surface rocks display a complex variation, often with peak backscattering at high incidence angles (??i = 70??-75??). Copyright 1998 by the American Geophysical Union.

Publication Year 1998
Title Estimation of Mars radar backscatter from measured surface rock populations
Authors J.E. Baron, R.A. Simpson, G.L. Tyler, H. J. Moore, J.K. Harmon
Publication Type Article
Publication Subtype Journal Article
Series Title Journal of Geophysical Research E: Planets
Index ID 70020543
Record Source USGS Publications Warehouse