A prototype knowledge- and object-based image analysis model was developed to inventory and map least tern and piping plover habitat on the Missouri River, USA. The model has been used to inventory the state of sandbars annually for 4 segments of the Missouri River since 2006 using QuickBird imagery. Interpretation of the state of sandbars is difficult when images for the segment are acquired at different river stages and different states of vegetation phenology and canopy cover. Concurrent QuickBird and RapidEye images were classified using the model and the spatial correspondence of classes in the land cover and sandbar maps were analysed for the spatial extent of the images and at nest locations for both bird species. Omission and commission errors were low for unvegetated land cover classes used for nesting by both bird species and for land cover types with continuous vegetation cover and water. Errors were larger for land cover classes characterized by a mixture of sand and vegetation. Sandbar classification decisions are made using information on land cover class proportions and disagreement between sandbar classes was resolved using fuzzy membership possibilities. Regression analysis of area for a paired sample of 47 sandbars indicated an average positive bias, 1.15 ha, for RapidEye that did not vary with sandbar size. RapidEye has potential to reduce temporal uncertainty about least tern and piping plover habitat but would not be suitable for mapping sandbar erosion, and characterization of sandbar shapes or vegetation patches at fine spatial resolution.