Extreme events trigger terrestrial and marine ecosystem collapses: A tale of two regions
We outline the multiple, cross-scale, and complex consequences of terrestrial and marine ecosystem heatwaves in two regions on opposite sides of the planet: the southwestern USA and southwestern Australia, both encompassing Global Biodiversity Hotspots, and where ecosystem collapses or features of it have occurred in the past two decades. We highlight ecosystem shifts that have clearly demonstrated a substantial change from a baseline state over time, although not necessarily across their entire distribution, with evidence of collapse at local scales. Responses to temperature extremes, such as heatwaves, encompass processes at all scales, including population level (e.g. altered demography such as survival, recruitment, and fecundity, together resulting in structural changes), community level (e.g. species compositional shifts), and ecosystem level (e.g. carbon loss), as well as physical properties altered by vegetation loss (e.g. microclimate, fire behaviour on land). These changes impact all trophic levels with foundational species losses (such as seagrasses, kelp, and trees), flowing through to vertebrates (such as sea turtles, penguins, and cockatoos). Where extensive collapse has occurred, shifts in microclimate could affect important biosphere-to-atmosphere feedbacks including fluxes of energy, carbon, and water. Such extensive changes usually do not occur in isolation and frequently interact with other disturbance processes such as fire, storms, pathogen and pest outbreaks, and anthropogenic stressors. Interactions may alter the likelihood, extent, or severity of subsequent disturbances (linked disturbances) as well as condition the ecological response and recovery (compound disturbances). In addition, if ecosystem collapse is extensive enough (e.g. tree die-off), those changes also can impact climate and ecosystems elsewhere via ecoclimate teleconnections. Increasing rates of climatic extremes will drive a host of direct and indirect feedbacks certain to produce large-scale shifts in ecological functioning at unprecedented rates. Understanding how, why, and where these shifts will occur will be critical for effective ecosystem management and climate change mitigation.
Citation Information
Publication Year | 2021 |
---|---|
Title | Extreme events trigger terrestrial and marine ecosystem collapses: A tale of two regions |
Authors | Katinka X. Ruthrof, Joseph B. Fontaine, David D. Breshears, Jason P. Field, Craig D. Allen |
Publication Type | Book Chapter |
Publication Subtype | Book Chapter |
Index ID | 70217621 |
Record Source | USGS Publications Warehouse |
USGS Organization | Fort Collins Science Center |