Extreme variation of sulfur isotopic compositions in pyrite from the Qiuling sediment-hosted gold deposit, West Qinling orogen, central China: An in situ SIMS study with implications for the source of sulfur
High spatial resolution textural (scanning electron microscope (SEM)), chemical (electron microprobe (EMP)) and laser ablation-inductively coupled plasma-mass spec- trometry (LA-ICP-MS)), and sulfur isotopic (secondary ion mass spectrometry (SIMS)) analyses of pyrite from the Qiuling sediment-hosted gold deposit (232±4 Ma) in the West Qinling orogen, central China were conducted to distinguish pyrite types and gain insights into the source and evolution of sulfur in hydrothermal fluids. The results reveal an enormous variation (−27.1 to +69.6‰) in sulfur isotopic composition of pyrite deposited during three paragenetic stages. Pre-ore framboidal pyrite, which is characterized by low concentra- tions of As, Au, Cu, Co, and Ni, has negative δ34S values of −27.1 to −7.6‰ that are interpreted in terms of bacterial re- duction of marine sulfate during sedimentation and diagenesis of the Paleozoic carbonate and clastic sequences, the predom- inant lithologies in the deposit area, and the most important hosts of many sediment-hosted gold deposits throughout the West Qinling orogen. The ore-stage hydrothermal pyrite con- tains high concentrations of Au, As, Cu, Sb, Tl, and Bi and hasa relatively narrow range of positive δ34S values ranging from +8.1 to +15.2‰. The sulfur isotope data are comparable to those of ore pyrite from many Triassic orogenic gold deposits and Paleozoic sedimentary exhalative (SEDEX) Pb-Zn de- posits in the West Qinling orogen, both being hosted mainly in the Devonian sequence. This similarity indicates that sulfur, responsible for the auriferous pyrite at Qiuling, was largely derived from the metamorphic devolatization of Paleozoic marine sedimentary rocks. Post-ore-stage pyrite, which is sig- nificantly enriched in Co and Ni but depleted in Au and As, has unusually high δ34S values ranging from +37.4 to +69.6 ‰, that are interpreted to result from thermochemical reduc- tion of evaporite sulfates in underlying Cambrian sedimentary rocks with very high δ34S values. The variations in Au content and sulfur isotopic compositions across a single ore-stage py- rite grain may reflect displacement of indigenous groundwater with low δ34S values by auriferous metamorphic fluids with high δ34S values. The very low-grade metamorphism of the host rocks and the metamorphic derivation of sulfur for the ore pyrite indicate that the Qiuling sediment-hosted gold deposit is an epizonal manifestation of an orogenic gold system in the West Qinling orogen.
Citation Information
Publication Year | 2015 |
---|---|
Title | Extreme variation of sulfur isotopic compositions in pyrite from the Qiuling sediment-hosted gold deposit, West Qinling orogen, central China: An in situ SIMS study with implications for the source of sulfur |
DOI | 10.1007/s00126-015-0597-9 |
Authors | Lei Chen, Xian-hua Li, Jian-wei Li, Albert H. Hofstra, Yu Liu, Alan E. Koenig |
Publication Type | Article |
Publication Subtype | Journal Article |
Series Title | Mineralium Deposita |
Index ID | 70193365 |
Record Source | USGS Publications Warehouse |
USGS Organization | Central Mineral and Environmental Resources Science Center |