Skip to main content
U.S. flag

An official website of the United States government

Geohydrology and Numerical Simulation of the Ground-Water Flow System of Molokai, Hawaii

January 1, 1997

A two-dimensional, steady-state, areal ground-water flow model was developed for the island of Molokai, Hawaii, to enhance the understanding of (1) the conceptual framework of the ground-water flow system, (2) the distribution of aquifer hydraulic properties, and (3) the regional effects of ground-water withdrawals on water levels and coastal discharge. The model uses the finite-element code AQUIFEM-SALT, which simulates flow of fresh ground water in systems that may have a freshwater lens floating on denser underlying saltwater.

Model results are in agreement with the general conceptual model of the flow system on Molokai, where ground water flows from the interior, high-recharge areas to the coast. The model-calculated ground-water divide separating flow to the northern and southern coasts lies to either the north or the south of the topographic divide but is generally not coincident with the topographic divide.

On the basis of model results, the following horizontal hydraulic conductivities were estimated: (1) 1,000 feet per day for the dike-free volcanic rocks of East and West Molokai, (2) 100 feet per day for the marginal dike zone of the East Molokai Volcano, (3) 2 feet per day for the West Molokai dike complex, (4) 0.02 feet per day for the East Molokai dike complex, and (5) 500 feet per day for the Kalaupapa Volcanics.

Three simulations to determine the effects of proposed ground-water withdrawals on water levels and coastal discharge, relative to model-calculated water levels and coastal discharge for 1992-96 withdrawal rates, show that the effects are widespread. For a withdrawal rate of 0.337 million gallons per day from a proposed well about 4 miles southeast of Kualapuu and 3 miles north of Kamiloloa, the model-calculated drawdown of 0.01 foot or more extends 4 miles southeast and 6 miles northwest from the well. For a withdrawal rate of 1.326 million gallons per day from the same well, the model-calculated drawdown of 0.01 foot or more extends 6 miles southeast and 9 miles northwest from the well. In a third scenario, the withdrawal rate from an existing well near Kualapuu was increased by 0.826 million gallons per day. The model-calculated drawdown of 0.01 foot or more extends 6 miles southeast and 8 miles northwest from the well. In all scenarios, coastal discharge is reduced by an amount equal to the additional withdrawal.

Additional data needed to improve the understanding of the ground-water flow system on Molokai include: (1) a wider spatial distribution and longer temporal distribution of water-levels, (2) independent estimates of hydraulic conductivity, (3) improved recharge estimates, (4) information about the vertical distribution of salinity in ground water, (5) streamflow data at additional sites, and (6) improved information about the subsurface geology.

Publication Year 1997
Title Geohydrology and Numerical Simulation of the Ground-Water Flow System of Molokai, Hawaii
DOI 10.3133/wri974176
Authors Delwyn S. Oki
Publication Type Report
Publication Subtype USGS Numbered Series
Series Title Water-Resources Investigations Report
Series Number 97-4176
Index ID wri974176
Record Source USGS Publications Warehouse
USGS Organization Pacific Islands Water Science Center