Skip to main content
U.S. flag

An official website of the United States government

The high-pressure electronic structure of magnesiowustite (Mg, Fe)O: applications to the physics and chemistry of the lower mantle

January 1, 1991

The electronic structure of magnesiowustite is investigated using self-consistent field Xα scattered wave (SCF-Xα-SW) molecular orbital calculations on (FeO6)10− and (FeMg12O14)2− clusters. Calculated one-electron transition energies are used to interpret the optical spectrum of (Mg, Fe)O. The results are applied to the electrical and thermal conductivity of the lower mantle. The spin pairing of Fe2+ and the effect of pressure on bonding in magnesiowustite, with some inferences regarding the incorporation of oxygen in the outer core, is also addressed. The approach used here appears to give a reliable description of the energy and pressure dependence of the spin-allowed 5T2g → 5Eg ligand field transition and the spin-pairing transition of Fe2+ in (Mg, Fe)O. However, the oxygen to metal charge transfer transitions in (Mg, Fe)O are not as reliably determined insofar as the p-d band gap varies with cluster size and the energies of the charge transfer states cannot be found without including configurational interaction. Nevertheless, it is argued that the charge transfer transitions that are intrinsic to (Fe, Mg)O are of a sufficiently high energy to be irrelevant to the electrical and thermal conductivity of the lower mantle. This is especially true if Fe2+ adopts the low-spin configuration. The geophysically significant properties of (Fe, Mg)O probably result from defect Fe3+.

Publication Year 1991
Title The high-pressure electronic structure of magnesiowustite (Mg, Fe)O: applications to the physics and chemistry of the lower mantle
DOI 10.1029/91JB01202
Authors David M. Sherman
Publication Type Article
Publication Subtype Journal Article
Series Title Journal of Geophysical Research
Index ID 70016533
Record Source USGS Publications Warehouse