Skip to main content
U.S. flag

An official website of the United States government

Hydrology and water quality in the Green River and surrounding agricultural areas near Green River in Emery and Grand Counties, Utah, 2004-05

September 11, 2006

Water from the Colorado River and its tributaries is used for municipal and industrial purposes by about 27 million people and irrigates nearly 4 million acres of land in the Western United States. Water users in the Upper Colorado River Basin consume water from the Colorado River and its tributaries, reducing the amount of water in the river. In addition, application of water to agricultural land within the basin in excess of crop needs can increase the transport of dissolved solids to the river. As a result, dissolved-solids concentrations in the Colorado River have increased, affecting downstream water users. During 2004-05, the U.S. Geological Survey, in cooperation with the Natural Resources Conservation Service, investigated the occurrence and distribution of dissolved solids in water from the agricultural areas near Green River, Utah, and in the adjacent reach of the Green River, a principle tributary of the Colorado River.

The flow-weighted concentration of dissolved solids diverted from the Green River for irrigation during 2004 and 2005 was 357 milligrams per liter and the mean concentration of water collected from seeps and drains where water was returning to the river during low-flow conditions was 4,170 milligrams per liter. The dissolved-solids concentration in water from the shallow part of the ground-water system ranged from 687 to 55,900 milligrams per liter.

Measurable amounts of dissolved solids discharging to the Green River are present almost exclusively along the river banks or near the mouths of dry washes that bisect the agricultural areas. The median dissolved-solids load in discharge from the 17 drains and seeps visited during the study was 0.35 ton per day. Seasonal estimates of the dissolved-solids load discharging from the study area ranged from 2,800 tons in the winter to 6,400 tons in the spring. The estimate of dissolved solids discharging from the study area annually is 15,700 tons.

Water samples collected from selected sites within the Green River agricultural areas were analyzed for naturally occurring isotopes of strontium and boron, which can be useful for differentiating dissolved-solids sources. Substantial variations in the delta strontium-87 and delta boron-11 values among the sites were measured. Canal and river samples had relatively low concentrations of strontium and the most positive (heavier) isotopic ratios, while drains and seeps had a wide range of strontium concentrations and isotopic ratios that generally were less positive (lighter). Further study of the variation in strontium and boron concentrations and isotope ratios may provide a means to distinguish end members and discern processes affecting dissolved solids within the Green River study area; however, the results from isotope data collected during this study are inconclusive.

Flow and seepage losses were estimated for the three main canals in the study area for May 2 to October 4 in any given year. This period coincides with the frost-free period in the Green River area. Estimated diversion from the Green River into the Thayn, East Side, and Green River Canals is 6,600, 6,070, and 19,900 acre-feet, respectively. The estimated seepage loss to ground water from the Thayn, East Side, and Green River Canals during the same period is 1,550, 1,460, and 4,710 acre-feet, respectively.

Publication Year 2006
Title Hydrology and water quality in the Green River and surrounding agricultural areas near Green River in Emery and Grand Counties, Utah, 2004-05
DOI 10.3133/sir20065186
Authors S.J. Gerner, L.E. Spangler, B. A. Kimball, Dale E. Wilberg, D. L. Naftz
Publication Type Report
Publication Subtype USGS Numbered Series
Series Title Scientific Investigations Report
Series Number 2006-5186
Index ID sir20065186
Record Source USGS Publications Warehouse
USGS Organization Utah Water Science Center