Skip to main content
U.S. flag

An official website of the United States government

The late Cenozoic diatom stratigraphy and paleolimnology of Tule Lake, Siskiyou Co. California

January 1, 1991

Lacustrine diatoms are diverse, well preserved and abundant in cores of lake sediment to 334 m depth near the town of Tulelake, Siskiyou County, northern California. The cores have been dated by radiometric, tephrochronologic and paleomagnetic techniques, which indicate a basal age of about 3 million years (Ma) and a nearly continuous depositional record for the Tule Lake basin for the last 3 million years (My). Fossil diatoms document the late Cenozoic paleolimnologic and paleoclimatic history for the northwestern edge of the Basin and Range Province. During the last 3 My, Tule Lake was typically a relatively deep, extensive lake. The Pliocene is characterized by a diatom flora dominated by Aulacoseira solida suggesting more abundant summer precipitation and warmer winters. Increases in 'Fragilaria' at 2.4 Ma and between 2.0 and 1.7 Ma imply cooler summers that correlate to glacial environments recorded elsewhere in the world. Stephanodiscus niagarae and 'Fragilaria' species dominate the Pleistocene. Benthic diatoms of alkalineenriched, saline waters occur with S. niagarae between 100 and 40 m depth (0.90-0.14 Ma). Tephrochronology indicates slow deposition and possible hiatuses between about 0.6 and 0.2 Ma. Overall, the Pleistocene diatom flora reflects cooler and sometimes drier climates, especially after major glaciations began 0.85 Ma. The chronology of even-numbered oxygen isotope stages approximately matches fluctuations in the abundance in 'Fragilaria' species since 1 Ma, suggesting that glacial periods at Tule Lake were expressed by relatively cool summers with enhanced effective moisture. Interglacial periods are represented by variable mixtures of freshwater planktonic and benthic alkaline diatom assemblages that suggest seasonal environments with winter-spring precipitation and summer moisture deficits. Glacial-interglacial environments since 150 ka were distinct from, and more variable than, those occurring earlier. The last full glacial period was very dry. Aulacoseira ambigua characterizes the late glacial and early Holocene record of Tule Lake. Its distribution indicates that warmer and wetter climates began about 15 ka in this part of the Great Basin. Fluctuations in diatom concentration suggests a 41000-yr. cycle between 3.0 and 2.5 Ma and 100000-yr. cycles after 1.0 Ma. In the late Pliocene and early Pleistocene, Aulacoseira solida percentages wax and wane in an approximately 400000-yr. cycle. The apparent response of Tule Lake diatom communities to orbitally induced insolation cycles underscores the importance of this record for the study of late Cenozoic paleoclimate change. The diatom stratigraphy records the evolution and local extinction of several species that may be biochronologically important. Stephanodiscus niagarae first appeared and became common in the Tule Lake record shortly after 1.8 Ma. Stephanodiscus carconensis disappeared about 1.8 Ma, while Aulacoseira solida is rare in the core after about 1.35 Ma. Cyclotella elgeri, a diatom characteristic of some outcrops referred to the Yonna Formation (Pliocene), is common only near the base of the core at an age of about 3 Ma. Detection of local extinctions is complicated by reworking of distinctive species from Pliocene diatomites surrounding Tule Lake. A new species, Aulacoseira paucistriata, is described from Pliocene lake deposits in the Klamath Basin. ?? 1991 Kluwer Academic Publishers.

Publication Year 1991
Title The late Cenozoic diatom stratigraphy and paleolimnology of Tule Lake, Siskiyou Co. California
DOI 10.1007/BF00233073
Authors J.P. Bradbury
Publication Type Article
Publication Subtype Journal Article
Series Title Journal of Paleolimnology
Index ID 70016686
Record Source USGS Publications Warehouse
Was this page helpful?