Skip to main content
U.S. flag

An official website of the United States government

Late-stage development of the Bryant Canyon turbidite pathway on the Louisiana continental slope

September 19, 2000

GLORIA sidescan imagery, multibeam bathymetry, seismic profiles, and piston cores (3–5 m penetration) reveal the near-surface geology of the Bryant Canyon turbidite pathway on the continental margin of Louisiana. This pathway extends from the continental shelf edge, across the continental slope, to a deep-sea fan on the continental rise. The pathway is narrow (<2 km) where it crosses shallow salt deposits. Turbidites have been sampled from these narrow segments, and radiocarbon dates indicate that some of them accumulated as recently as 10,150 yr B.P. The pathway broadens however, where it crosses mini-basins whose floors are covered largely by muddy mass-transport deposits and coarse silt turbidites. Mass-transport deposits in the upper 4.7 m of cores from the floors of mini-basins accumulated 18,140-3,400 yr. BP. Seismic profiles show that the mass-transport deposits in some of the mini-basins are as much as 225 milliseconds thick and that turbidites in the basin floor are buried by these deposits. Salt movement has had a major impact on this pathway, and its thalweg no longer has a continuous down-slope gradient. Some mini-basin floors along the pathway are now more than 500 m deeper than their basin’s spill point. We propose a 6-stage conceptual model to explain our observations for the evolution of a mini-basin along this turbidite pathway. In this model, an active channel feeds sand to a mini-basin (Stabe B). Once the mini-basin is filled, the sand deposit is entrenched by a bypass channel (Stage C). When the turbidite system shuts off, salt migration oversteepens the mini-basin walls (Stage D) which collapse and create a layer of mass-transport deposits on the mini-basin floor (Stage E). The depositional succession is capped by a layer of highstand hemipelagic drape (Stage F). The Bryant Canyon turbidite pathway provides a recent example of a large turbidite pathway in the Gulf of Mexico that crosses an area of active salt tectonics thus providing a conceptual model for older systems in similar settings. In Bryant Canyon, thick turbidite sands presumably are found in mini-basins however, they are sealed by thick, fine-grained, mass-transport deposits which terminate mini-basin turbidite deposition cycles. The importance of mass-transport deposits in basins along this turbidite pathway is in startling contrast to the Trinity-Brazos pathway whose shallow subsurface expression is virtually free of mass-transport deposits and has undergone minimal deformation by salt movement.

Publication Year 2000
Title Late-stage development of the Bryant Canyon turbidite pathway on the Louisiana continental slope
Authors David C. Twichell, Hans Nelson, John E. Damuth
Publication Type Conference Paper
Publication Subtype Conference Paper
Index ID 70126197
Record Source USGS Publications Warehouse
USGS Organization Coastal and Marine Geology Program; Woods Hole Coastal and Marine Science Center