Mapping behavioral landscapes for animal movement: a finite mixture modeling approach
Because of its role in many ecological processes, movement of animals in response to landscape features is an important subject in ecology and conservation biology. In this paper, we develop models of animal movement in relation to objects or fields in a landscape. We take a finite mixture modeling approach in which the component densities are conceptually related to different choices for movement in response to a landscape feature, and the mixing proportions are related to the probability of selecting each response as a function of one or more covariates. We combine particle swarm optimization and an Expectation-Maximization (EM) algorithm to obtain maximum likelihood estimates of the model parameters. We use this approach to analyze data for movement of three bobcats in relation to urban areas in southern California, USA. A behavioral interpretation of the models revealed similarities and differences in bobcat movement response to urbanization. All three bobcats avoided urbanization by moving either parallel to urban boundaries or toward less urban areas as the proportion of urban land cover in the surrounding area increased. However, one bobcat, a male with a dispersal-like large-scale movement pattern, avoided urbanization at lower densities and responded strictly by moving parallel to the urban edge. The other two bobcats, which were both residents and occupied similar geographic areas, avoided urban areas using a combination of movements parallel to the urban edge and movement toward areas of less urbanization. However, the resident female appeared to exhibit greater repulsion at lower levels of urbanization than the resident male, consistent with empirical observations of bobcats in southern California. Using the parameterized finite mixture models, we mapped behavioral states to geographic space, creating a representation of a behavioral landscape. This approach can provide guidance for conservation planning based on analysis of animal movement data using statistical models, thereby linking connectivity evaluations to empirical data.
Citation Information
Publication Year | 2013 |
---|---|
Title | Mapping behavioral landscapes for animal movement: a finite mixture modeling approach |
DOI | 10.1890/12-0687.1 |
Authors | Jeff A. Tracey, Jun Zhu, Erin E. Boydston, Lisa M. Lyren, Robert N. Fisher, Kevin R. Crooks |
Publication Type | Article |
Publication Subtype | Journal Article |
Series Title | Ecological Applications |
Index ID | 70125388 |
Record Source | USGS Publications Warehouse |
USGS Organization | Western Ecological Research Center |