Modeling δ18O as an early indicator of regime shift arising from salinity stress in coastal vegetation
In many important coastal habitats, a combination of increasing soil salinization due to sea level rise, reduced precipitation and storm surges may induce regime shift from salinity-intolerant glycophytic vegetation to salinity-tolerant halophytic species. Early detection of regime shift due to salinity stress in vegetation may facilitate conservation efforts. It has been shown that the 18O value of water in the xylem of trees can be used as a surrogate for salinity in the rooting zone of plants. Coupling measured δ18O values in the tree xylem with simulated δ18O values in trees and salinity in the vadose zone can be used to investigate competitive responses of glycophytic versus halophytic trees. MANTRA-O18 simulations suggest that the impacts of salinization on diminishing the resilience of salinity-intolerant trees can be detected up to 25 years before the glycophytic trees are threatened with regime shift to halophytic species. This early detection provides critical lead time and valuable information and insights useful for planning adaptation strategy to mitigate against the adverse impacts of sea level rise and climate change.
Citation Information
Publication Year | 2019 |
---|---|
Title | Modeling δ18O as an early indicator of regime shift arising from salinity stress in coastal vegetation |
DOI | 10.1007/s10040-019-01930-3 |
Authors | Su Yean Teh, Hock Lye Koh, Donald L. DeAngelis, Clifford I. Voss, Leonel da Silveira Lobo Sternberg |
Publication Type | Article |
Publication Subtype | Journal Article |
Series Title | Hydrogeology Journal |
Index ID | 70202357 |
Record Source | USGS Publications Warehouse |
USGS Organization | Wetland and Aquatic Research Center |