Skip to main content
U.S. flag

An official website of the United States government

Monitoring marine eruptions

October 4, 2024

Introduction

Submarine volcanoes produce much of the same seismicity and eruptive activity as subaerial volcanoes and can pose hazards to society. Although they can be monitored with similar techniques and methods as described in other chapters of this volume, their submerged location brings unique challenges. This chapter addresses these challenges and provides recommendations for monitoring volcanoes fully or partly in marine environments to meet the capabilities described in other chapters of this volume.

The United States and its territories host dozens of submarine volcanoes with most (around 60) in the Commonwealth of the Northern Mariana Islands. Approximately 20 of the Northern Mariana Islands submarine volcanoes are known to be hydrothermally active, and 10 have confirmed eruptions since the 1950s (for example, Baker and others, 2008; Tepp and others, 2019a). Nine of those volcanoes were considered by the National Volcanic Threat Assessment (Ewert and others, 2018) to have a combination of eruptive type and summit depth that poses a higher risk of hazardous eruptions, although only one was listed as a moderate (level 3) threat. Other notable submarine volcanoes of interest to the United States that have historically erupted are Axial Seamount off the Washington State coast, Kamaʻehuakanaloa in Hawaiʻi, and Vailuluʻu seamount in American Samoa. All of these, however, have a low risk of hazards because of their depth (greater than 600 meters below sea level) and eruptive type and so are not included in the National Volcanic Threat Assessment. In addition to submarine volcanoes, the submerged flanks of island volcanoes can also be a source of hazardous submarine eruptions—for example, the 1877 eruption of Mauna Loa, Hawai‘i, in Kealakekua Bay (Wanless and others, 2006).

The most notable submarine eruption in recent times was the 2022 eruption of Hunga Tonga–Hunga Haʻapai in Tonga, which was one of the largest eruptions on Earth in the past 100 years. It created a massive volcanic plume, unprecedented shock waves, and far-reaching tsunami (Lynett and others, 2022). Other recent submarine eruptions in the Pacific Ocean Basin have produced subaerial plumes that reached aircraft heights (Carey and others, 2014) and large pumice rafts that can affect marine traffic and harbors (for example, Jutzeler and others, 2014; Kornei, 2019). These examples illustrate the potential hazards of major submarine eruptions. Yet, submarine volcanoes are largely unmonitored, and many eruptions occur that are unnoticed or only identified hours or days afterward.

Within U.S. territory, submarine volcanoes in the Northern Mariana Islands have been known to produce eruptive activity that can affect society. Reports from fishermen and other marine vessels in the Northern Mariana Islands have noted underwater explosions, sea-surface discoloration, and bubbling water, all of which are known to be signs of submarine volcanic activity. South Sarigan seamount, located about 160 kilometers (km) north of Saipan, erupted in 2010 from greater than 150 meters below the sea surface, resulting in a gas and ash plume that reached more than 11.9 km into the atmosphere (for example, Searcy, 2013; Embley and others, 2014), high enough to affect international air traffic. Precursory and co-eruptive seismicity was detected on the regional Northern Mariana Islands seismic network (Searcy, 2013) and on global monitoring instruments (Green and others, 2013).

Monitoring of submarine volcanoes is best accomplished with marine-based instrumentation, which is also useful for monitoring small island volcanoes that may not have the land area necessary for comprehensive subaerial monitoring. The primary marine-based instrumentation used for submarine volcanoes includes ocean-bottom pressure sensors to assess sea-floor deformation, ocean-bottom seismometers (OBSs) to detect seismicity, and both moored and ocean-bottom hydrophones to detect submarine explosions. Other sensors offer important monitoring data, such as turbidity, temperature, and chemistry of hydrothermal emissions. Marine-based instruments are typically deployed in campaign-style networks with no real-time telemetry owing to cost considerations and technical limitations. However, when necessary, marine instruments can be operated in real time using cables to transmit data to land-based facilities; other technologies for this purpose are in use or in development, such as acoustic transmission from the instrument to a moored buoy (Matsumoto and others, 2016) and a winch-based system with a satellite antenna that is part of the instrument mooring (Matsumoto and others, 2019). Emerging technologies for marine-based monitoring may be considered as part of a future monitoring plan. These technologies include ocean gliders and floats with on-board hydrophones that have been used to record earthquakes and submarine eruptions (for example, Matsumoto and others, 2013; Sukhovich and others, 2015) and fiber-optic cables that have been used as strainmeters to detect earthquakes (for example, Marra and others, 2018; Lindsey and others, 2019). Land-based instruments and satellites can also provide some capability for monitoring submarine volcanoes, but they provide more limited observations than marine-based instrumentation.

Publication Year 2024
Title Monitoring marine eruptions
DOI 10.3133/sir20245062I
Authors Gabrielle Tepp
Publication Type Report
Publication Subtype USGS Numbered Series
Series Title Scientific Investigations Report
Series Number 2024-5062
Index ID sir20245062I
Record Source USGS Publications Warehouse
USGS Organization Volcano Science Center
Was this page helpful?