Organic geochemistry of resins from modern Agathis australis and Eocene resins from New Zealand: Diagenetic and taxonomic implications
A maturation series of resins and fossil resins from New Zealand, ranging in age from Modern to Eocene and ranging from uncoalified to high volatile C bituminous coal, were analyzed by elemental, pyrolysis-gas chromatography (Py-GC), Fourier Transform infrared (FTir), and solid-state 13C nuclear magnetic resonance (13C NMR) techniques. For comparison, four resin samples from the Latrobe Valley, Australia, were analyzed. All of the resins and fossil resins of this study show very high H/C atomic ratios, and are characterized by dominant peaks in the 10-60??ppm range of solid-state 13C NMR spectra and prominent bands in the aliphatic stretching region (2800-3000??cm- 1) of FTir spectra, all indicating a highly aliphatic molecular structure. The 13C NMR and FTir data indicate a diterpenoid structure for these resins. There is an abrupt loss of oxygen that occurs at the Lignite A/Subbituminous C stage, which is attributed to a dramatic loss of carboxyl (COOH) from the diterpenoid molecule. This is a new finding in the diagenesis of resins. This important loss in oxygenated functional groups is attributed to a maturation change. Also, there is a progressive loss of exomethylene (CH2) groups with increasing degree of maturation, as shown by both 13C NMR and FTir data. This change has been noted by previous investigators. Exomethylene is absent in the fossil resins from the Eocene high volatile C bituminous coals. This progressive loss is characteristic of Class I resinites. FTir data indicate that the oxygenated functional groups are strong in all the resin samples except the fossil resin from high volatile C bituminous coal. This important change in oxygenated functional groups is attributed to maturation changes. The 13C NMR and FTir data indicate there are minor changes in the Agathis australis resin from the living tree and soil, which suggests that alteration of A. australis resins begins shortly after deposition in the soil for as little as 1000??years. The Morwell and Yallourn fossil resins from brown coal (lignite B) Australia do not have some of the FTir characteristics of the New Zealand resins, which most likely indicates they have a different plant source because different degrees of oxidation and weathering and changes due to fires (i.e., charring) can be ruled out. Our results have implications for studies of the maturation, provenance, and botanical sources of fossil resins and resinites in Eocene and Miocene coals and sediments of New Zealand and Australia. ?? 2009 Elsevier B.V. All rights reserved.
Citation Information
Publication Year | 2009 |
---|---|
Title | Organic geochemistry of resins from modern Agathis australis and Eocene resins from New Zealand: Diagenetic and taxonomic implications |
DOI | 10.1016/j.coal.2009.07.015 |
Authors | P.C. Lyons, Maria Mastalerz, W. H. Orem |
Publication Type | Article |
Publication Subtype | Journal Article |
Series Title | International Journal of Coal Geology |
Index ID | 70037366 |
Record Source | USGS Publications Warehouse |