Projected urban growth in the Southeastern USA puts small streams at risk
Future land-use development has the potential to profoundly affect the health of aquatic ecosystems in the coming decades. We developed regression models predicting the loss of sensitive fish (R2=0.39) and macroinvertebrate (R2=0.64) taxa as a function of urban and agricultural land uses and applied them to projected urbanization of the rapidly urbanizing Piedmont ecoregion of the southeastern USA for 2030 and 2060. The regression models are based on a 2014 investigation of water quality and ecology of 75 wadeable streams across the region. Based on these projections, stream kilometers experiencing >50% loss of sensitive fish and invertebrate taxa will nearly quadruple to 19,500 and 38,950 km by 2060 (16 and 32% of small stream kilometers in the region), respectively. Uncertainty was assessed using the 20 and 80% probability of urbanization for the land-use projection model and using the 95% confidence intervals for the regression models. Adverse effects on stream health were linked to elevated concentrations of contaminants and nutrients, low dissolved oxygen, and streamflow alteration, all associated with urbanization. The results of this analysis provide a warning of potential risks from future urbanization and perhaps some guidance on how those risks might be mitigated.
Citation Information
Publication Year | 2019 |
---|---|
Title | Projected urban growth in the Southeastern USA puts small streams at risk |
DOI | 10.1371/journal.pone.0222714 |
Authors | Peter C. Van Metre, Ian R. Waite, Sharon L. Qi, Barbara Mahler, Adam Terando, Michael Wieczorek, Michael R. Meador, Paul M. Bradley, Celeste A. Journey, Travis S. Schmidt, Daren Carlisle |
Publication Type | Article |
Publication Subtype | Journal Article |
Series Title | PLoS ONE |
Index ID | 70206593 |
Record Source | USGS Publications Warehouse |
USGS Organization | WMA - Earth System Processes Division |