Skip to main content
U.S. flag

An official website of the United States government

Reconciling models and measurements of marsh vulnerability to sea level rise

January 12, 2022

Tidal marsh survival in the face of sea level rise (SLR) and declining sediment supply often depends on the ability of marshes to build soil vertically. However, numerical models typically predict survival under rates of SLR that far exceed field-based measurements of vertical accretion. Here, we combine novel measurements from seven U.S. Atlantic Coast marshes and data from 70 additional marshes from around the world to illustrate that—over continental scales—70% of variability in marsh accretion rates can be explained by suspended sediment concentratin (SSC) and spring tidal range (TR). Apparent discrepancies between models and measurements can be explained by differing responses in high marshes and low marshes, the latter of which accretes faster for a given SSC and TR. Together these results help bridge the gap between models and measurements, and reinforce the paradigm that sediment supply is the key determinant of wetland vulnerability at continental scales.

Publication Year 2022
Title Reconciling models and measurements of marsh vulnerability to sea level rise
DOI 10.1002/lol2.10230
Authors Daniel J. Coleman, Mark Schuerch, Stijn Temmerman, Glenn R. Guntenspergen, Christopher G. Smith, Matthew L. Kirwan
Publication Type Article
Publication Subtype Journal Article
Series Title Limnology and Oceanography Letters
Index ID 70227474
Record Source USGS Publications Warehouse
USGS Organization Patuxent Wildlife Research Center; St. Petersburg Coastal and Marine Science Center; Eastern Ecological Science Center