Skip to main content
U.S. flag

An official website of the United States government

Response of geese to aircraft disturbances

January 1, 2000

Low-flying aircraft can affect behavior, physiology, and distribution of wildlife (Manci et al., 1988), and over time, may impact a population by reducing survival and reproductive performance. Thus, it is important to identify the particular aspects of overflights that affect animals so that management strategies can be developed to minimize adverse effects.

Waterfowl are particularly sensitive to low-flying aircraft (Manci et al., 1988) and respond at all stages of their annual cycle, including breeding (Gollop et al., 1974a; Laing, 1991), molting (Derksen et al., 1979; Mosbech and Glahder, 1991), migration (Jones and Jones, 1966; Belanger and Bedard, 1989), and wintering (Owens, 1977; Kramer et al., 1979; Henry, 1980). Waterfowl response can be quite variable both within and among species (Fleming et al., 1996). For example, response can vary with age, sex, and body condition of individual, habitat type and quality, and previous exposure to aircraft (Dahlgren and Korshgen, 1992). However, the most important factors influencing a response are aircraft type (Davis and Wiseley, 1974; Jensen, 1990), noise (Mosbech and Glahder, 1991; Temple, 1993), and proximity to the birds, as measured in altitude and lateral distance (Derksen et al., 1979; Belanger and Bedard, 1989; Ward et al., 1994). Wildlife managers can reduce impacts on a population by controlling or modifying these factors.

In an experimental study conducted at Izembek Lagoon in southwestern Alaska in 1985-1988 (Ward and Stehn, 1989), we conducted planned aircraft overflights with control of aircraft type, noise, altitude, and lateral distance to flocks (hereafter called lateral distance) to measure behavioral response of fall-staging Pacific brant (Branta bernicla nigricans) and Canada geese (B. canadensis taverneri) to fixed- and rotary-wing aircraft. These data were then used to develop predictive models of the relationship between aircraft type, noise, altitude, and lateral distance and the response of geese (Ward et al., 1989). We also developed a simulation model incorporating energy intake and daily energy costs to assess the long-term consequences of repeated overflights on the ability of brant to obtain sufficient energy reserves necessary for fall migration and over winter survival (Ward and Stehn, 1989).

Publication Year 2000
Title Response of geese to aircraft disturbances
Authors David H. Ward, Robert A. Stehn, Dirk V. Derksen
Publication Type Conference Paper
Publication Subtype Conference Paper
Series Title Terra Borealis
Index ID 70185094
Record Source USGS Publications Warehouse
USGS Organization Alaska Science Center