Skip to main content
U.S. flag

An official website of the United States government

Rivers and streams: Ecosystem dynamics and integrating paradigms

January 1, 2008

Full understanding of running waters requires an ecosystem perspective, which encompasses the physical and chemical setting in interaction with dependent biological communities. Several conceptual models or paradigms of river and stream ecosystems that capture critical components of lotic ecosystems have been developed, including the ‘river continuum concept’, to describe fluxes of matter and energy within the stream or river channel together with exchanges between the channel and its terrestrial setting. A complete ecosystem perspective includes consideration of hierarchical spatial scales in a temporal context. Flow of energy in lotic ecosystems is driven by two alternative energy sources: sunlight regulating in-stream photosynthesis and plant litter derived from the stream-side riparian corridor or floodplain. Energy transfers within the ecosystem pass through micro- and macroproducers (algae and vascular hydrophytes) and micro- and macroconsumers (microorganisms, invertebrates, and vertebrates). Material fluxes encompass the cycling of key nutrients, such as nitrogen and phosphorus, and the transport, storage, and metabolism of dissolved (DOM) and particulate (POM) organic matter (OM). Growth of lotic periphyton (algae and associated microbes, microzoans, and detritus) and coarse (CPOM) and fine (FPOM) particulate organic matter constitute the food resources of nonpredaceous running-water invertebrates (e.g., shredders that consume CPOM and collectors that feed on FPOM and associated microbes of both).

Publication Year 2008
Title Rivers and streams: Ecosystem dynamics and integrating paradigms
DOI 10.1016/B978-008045405-4.00354-2
Authors K.W. Cummins, M.A. Wilzbach
Publication Type Book Chapter
Publication Subtype Book Chapter
Index ID 70179801
Record Source USGS Publications Warehouse
USGS Organization Coop Res Unit Seattle