Skip to main content
U.S. flag

An official website of the United States government

Seasonal relationships between precipitation, forest floor, and streamwater nitrogen, Isle Royale, Michigan

January 1, 1999

The Upper Great Lakes receive large amounts of precipitation-NH4/+ and moderate NO3/- inputs. Increased atmospheric inorganic N input has led to concern about ecosystem capacity to utilize excess N. This paper summarizes a 5-yr study of seasonal N content and flux in precipitation, snowpack, forest floor, and streamwater in order to assess the source of inorganic N outputs in streamflow from a small boreal watershed. Average precipitation N input was 3 kg ha-1 yr-1. The peak snowpack N content averaged 0.55 kg ha-1. The forest floor inorganic N pool was ???2 kg ha-1, eight times larger than monthly precipitation N input. The inorganic N pool size peaked in spring and early summer. Ninety percent of the forest floor inorganic N pool was made up of NH4/+-N. Forest floor inorganic N pools generally increased with temperature. Net N mineralization was 15 kg ha-1 yr-1, and monthly rates peaked in early summer. During winter, the mean monthly net N mineralization rate was twice the peak snowpack N content. Streamwater NO3/- concentration peaked in winter, and inorganic N output peaked in late fall. Beneath the dominant boreal forest species, net N mineralization rates were positively correlated (P < 0.05) with streamwater NO3/- concentrations. Forest floor NO3/- pools beneath alder [Alnus rugosa (Du Roi) Spreng] were positively correlated (P < 0.01) to streamwater NO3/- output. At the watershed mouth, streamwater NO3/- concentrations were positively correlated (P < 0.05) with precipitation NO3/- input and precipitation amount. The relatively small snowpack N content and seasonal precipitation N input compared to forest floor inorganic N pools and net N mineralization rates, the strong ecosystem retention of precipitation N inputs, and the seasonal streamwater NO3/- concentration and output pattern all indicated that little streamwater NO3/- came directly from precipitation or snowmelt.The Upper Great Lakes receive large amounts of precipitation-NH4+ and moderate NO3- inputs. Increased atmospheric inorganic N input has led to concern about ecosystem capacity to utilize excess N. This paper summarizes a 5-yr study of seasonal N content and flux in precipitation, snowpack, forest floor, and streamwater in order to assess the source of inorganic N outputs in streamflow from a small boreal watershed. Average precipitation N input was 3 kg ha-1 yr-1. The peak snowpack N content averaged 0.55 kg ha-1. The forest floor inorganic N pool was ??? 2 kg ha-1, eight times larger than monthly precipitation N input. The inorganic N pool size peaked in spring and early summer. Ninety percent of the forest floor inorganic N pool was made up of NH4+-N. Forest floor inorganic N pools generally increased with temperature. Net N mineralization was 15 kg ha-1 yr-1, and monthly rates peaked in early summer. During winter, the mean monthly net N mineralization rate was twice the peak snowpack N content. Streamwater NO3- concentration peaked in winter, and inorganic N output peaked in late fall. Beneath the dominant boreal forest species, net N mineralization rates were positively correlated (P < 0.05) with streamwater NO3- concentrations. Forest floor NO3- pools beneath alder [Alnus rugosa (Du Roi) Spreng] were positively correlated (P<0.01) to streamwater NO3- output. At the watershed mouth, streamwater NO3- concentrations were positively correlated (P < 0.05) with precipitation NO3- input and precipitation amount. The relatively small snowpack N content and seasonal precipitation N input compared to forest floor inorganic N pools and net N mineralization rates, the strong ecosystem retention of precipitation N inputs, and the seasonal streamwater NO3- concentration and output pattern all indicated that little streamwater NO3- came directly from precipitation or snowmelt.

Publication Year 1999
Title Seasonal relationships between precipitation, forest floor, and streamwater nitrogen, Isle Royale, Michigan
Authors R. Stottlemyer, D. Toczydlowski
Publication Type Article
Publication Subtype Journal Article
Series Title Soil Science Society of America Journal
Index ID 70021756
Record Source USGS Publications Warehouse