Semiautomatic mapping of permafrost in the Yukon Flats, Alaska
Thawing of permafrost due to global warming can have major impacts on hydrogeological processes, climate feedback, arctic ecology, and local environments. To understand these effects and processes, it is crucial to know the distribution of permafrost. In this study we exploit the fact that airborne electromagnetic (AEM) data are sensitive to the distribution of permafrost and demonstrate how the distribution of permafrost in the Yukon Flats, Alaska, is mapped in an efficient (semiautomatic) way, using a combination of supervised and unsupervised (machine) learning algorithms, i.e., Smart Interpretation and K-means clustering. Clustering is used to sort unfrozen and frozen regions, and Smart Interpretation is used to predict the depth of permafrost based on expert interpretations. This workflow allows, for the first time, a quantitative and objective approach to efficiently map permafrost based on large amounts of AEM data.
Citation Information
Publication Year | 2016 |
---|---|
Title | Semiautomatic mapping of permafrost in the Yukon Flats, Alaska |
DOI | 10.1002/2016GL071334 |
Authors | Mats Lundh Gulbrandsen, Burke J. Minsley, Lyndsay B. Ball, Thomas Mejer Hansen |
Publication Type | Article |
Publication Subtype | Journal Article |
Series Title | Geophysical Research Letters |
Index ID | 70193685 |
Record Source | USGS Publications Warehouse |
USGS Organization | Crustal Geophysics and Geochemistry Science Center |