Skip to main content
U.S. flag

An official website of the United States government

Simulated high-latitude soil thermal dynamics during the past four decades

April 1, 2015

Soil temperature (Ts ) change is a key indicator of the dynamics of permafrost. On seasonal and inter-annual time scales, the variability of Ts determines the active layer depth, which regulates hydrological soil properties and biogeochemical processes. On the multi-decadal scale, increasing T 5 s not only drives permafrost thaw/retreat, but can also trigger and accelerate the decomposition of soil organic carbon. The magnitude of permafrost carbon feedbacks is thus closely linked to the rate of change of soil thermal regimes. In this study, we used nine process-based ecosystem models with permafrost processes, all forced by different observation-based climate forcing during the period 1960–2000, to characterize the warming rate of Ts 10 in permafrost regions. There is a large spread of Ts trends at 20 cm depth across the models, with trend values ranging from 0.010 ± 0.003 to 0.031 ± 0.005 ◦C yr−1 . Most models show smaller increase in Ts with increasing depth. Air temperature (Ta ) and longwave downward radiation (LWDR) are the main drivers of Ts trends, but their relative contributions differ 15 amongst the models. Different trends of LWDR used in the forcing of models can explain 61 % of their differences in Ts trends, while trends of Ta only explain 5 % of the differences in Ts trends. Uncertain climate forcing contributes a larger uncertainty in Ts trends (0.021 ± 0.008 ◦C yr−1 , mean ± SD) than the uncertainty of model structure (0.012 ± 0.001 ◦C yr−1 ), diagnosed from the range of response between different mod- 20 els, normalized to the same forcing. In addition, the loss rate of near-surface permafrost area, defined as total area where the maximum seasonal active layer thickness (ALT) is less than 3 m loss rate is found to be significantly correlated with the magnitude of the trends of Ts at 1 m depth across the models (R = −0.85, P = 0.003), but not with the initial total near-surface permafrost area (R = −0.30, P = 0.438). The sensitivity of the total boreal near-surface permafrost area to T 25 s at 1 m, is estimated to be of −2.80 ± 0.67 million km2 ◦C −1 . Finally, by using two long-term LWDR datasets and relationships between trends of LWDR and Ts across models, we infer an observationconstrained total boreal near-surface permafrost area decrease comprised between 39 ± 14 × 103 and 75 ± 14 × 103 km2 yr−1 from 1960 to 2000. This corresponds to 9– 18 % degradation of the current permafrost area.

Publication Year 2015
Title Simulated high-latitude soil thermal dynamics during the past four decades
DOI 10.5194/tc-10-179-2016
Authors S. Peng, P. Ciais, T. Wang, I. Gouttevin, A. D. McGuire, D. Lawrence, E. Burke, X. Chen, C. Delire, C. Koven, A. MacDougall, A. Rinke, K. Saito, W. Zhang, R. Alkama, T. J. Bohn, B. Decharme, T. Hajima, D. Ji, D.P. Lettenmaier, P.A. Miller, J.C. Moore, B. Smith, T. Sueyoshi
Publication Type Article
Publication Subtype Journal Article
Series Title Cryosphere Discussions
Index ID 70169236
Record Source USGS Publications Warehouse
USGS Organization Coop Res Unit Seattle