Spatially explicit estimation of aboveground boreal forest biomass in the Yukon River Basin, Alaska
Quantification of aboveground biomass (AGB) in Alaska’s boreal forest is essential to the accurate evaluation of terrestrial carbon stocks and dynamics in northern high-latitude ecosystems. Our goal was to map AGB at 30 m resolution for the boreal forest in the Yukon River Basin of Alaska using Landsat data and ground measurements. We acquired Landsat images to generate a 3-year (2008–2010) composite of top-of-atmosphere reflectance for six bands as well as the brightness temperature (BT). We constructed a multiple regression model using field-observed AGB and Landsat-derived reflectance, BT, and vegetation indices. A basin-wide boreal forest AGB map at 30 m resolution was generated by applying the regression model to the Landsat composite. The fivefold cross-validation with field measurements had a mean absolute error (MAE) of 25.7 Mg ha−1 (relative MAE 47.5%) and a mean bias error (MBE) of 4.3 Mg ha−1(relative MBE 7.9%). The boreal forest AGB product was compared with lidar-based vegetation height data; the comparison indicated that there was a significant correlation between the two data sets.
Citation Information
Publication Year | 2015 |
---|---|
Title | Spatially explicit estimation of aboveground boreal forest biomass in the Yukon River Basin, Alaska |
DOI | 10.1080/01431161.2015.1004764 |
Authors | Lei Ji, Bruce K. Wylie, Dana R. N. Brown, Birgit E. Peterson, Heather D. Alexander, Michelle C. Mack, Jennifer R. Rover, Mark P. Waldrop, Jack W. McFarland, Xuexia Chen, Neal J. Pastick |
Publication Type | Article |
Publication Subtype | Journal Article |
Series Title | International Journal of Remote Sensing |
Index ID | 70146810 |
Record Source | USGS Publications Warehouse |
USGS Organization | Earth Resources Observation and Science (EROS) Center |