Skip to main content
U.S. flag

An official website of the United States government

Thermal and hydrological limitations on modeling carbon dynamics at wetland sites of discontinuous and continuous permafrost extent

June 21, 2024

Accurate representation of cryohydrological processes is fundamental for biosphere models, particularly at high-latitudes, given their influence on carbon and permafrost dynamics in carbon-rich peatlands and wetlands. This study analyzes site-level simulations in moist and wet drainage conditions in continuous or discontinuous permafrost regions, using a terrestrial ecosystem model DVM-DOS-TEM. Functional benchmarking was conducted against eddy covariance flux alongside soil temperature, moisture, and thaw depth observations. Thermal and hydrological analysis reveals parameter sensitivity and uncertainty concerning carbon cycling and permafrost dynamics. Flux representation is markedly consistent at sites characterized by continuous permafrost with less seasonal variation, owing to longer soil freezing duration. Sites in discontinuous permafrost, exhibiting active permafrost degradation and talik formation, pose considerable challenges in accurately depicting thaw depth. Underprediction of soil moisture across all sites has more pronounced effects on boreal wetlands characterized by thick organic layers up to 1 m. These results illustrate the limitations of terrestrial ecosystem models to represent environmental and ecological dynamics in wetlands. Attempts to adjust model hydrology have yielded marginal improvements in thaw depth prediction, but revealed large effects of abrupt phase changes for poorly drained sites on discontinuous permafrost. Our analysis suggests the importance of gradual phase change representation, particularly in ice-rich wetlands with thick organic layers, which will be crucial when evaluating the permafrost carbon-climate feedback in model projections.

Publication Year 2024
Title Thermal and hydrological limitations on modeling carbon dynamics at wetland sites of discontinuous and continuous permafrost extent
Authors Benjamin C. Maglio, Ruth Rutter, Tobey Carman, Colin W. Edgar, Eugénie S. Euskirchen, Hélène Genet, Andrew Mullen, Valeria Briones, Elchin Jafarov, Kristen L. Manies
Publication Type Conference Paper
Publication Subtype Conference Paper
Index ID 70255720
Record Source USGS Publications Warehouse
USGS Organization Geology, Minerals, Energy, and Geophysics Science Center