Thermal sensitivity of immune function: evidence against a generalist-specialist trade-off among endothermic and ectothermic vertebrates
Animal body temperature (Tbody) varies over daily and annual cycles, affecting multiple aspects of biological performance in both endothermic and ectothermic animals. Yet a comprehensive comparison of thermal performance among animals varying in Tbody (mean and variance) and heat production is lacking. Thus, we examined the thermal sensitivity of immune function (a crucial fitness determinant) in Vertebrata, a group encompassing species of varying thermal biology. Specifically, we investigated temperature-related variation in two innate immune performance metrics, hemagglutination and hemolysis, for 13 species across all seven major vertebrate clades. Agglutination and lysis were temperature dependent and were more strongly related to the thermal biology of species (e.g., mean Tbody) than to the phylogenetic relatedness of species, although these relationships were complex and frequently surprising (e.g., heterotherms did not exhibit broader thermal performance curves than homeotherms). Agglutination and lysis performance were positively correlated within species, except in taxa that produce squalamine, a steroidal antibiotic that does not lyse red blood cells. Interestingly, we found the antithesis of a generalist-specialist trade-off: species with broader temperature ranges of immune performance also had higher peak performance levels. In sum, we have uncovered thermal sensitivity of immune performance in both endotherms and ectotherms, highlighting the role that temperature and life history play in immune function across Vertebrata.
Citation Information
Publication Year | 2013 |
---|---|
Title | Thermal sensitivity of immune function: evidence against a generalist-specialist trade-off among endothermic and ectothermic vertebrates |
DOI | 10.1086/670191 |
Authors | Michael W. Butler, Zachary R. Stahlschmidt, Daniel R. Ardia, Scott Davies, Jon Davis, Louis J. Guillette, Nicholas Johnson, Stephen D. McCormick, Kevin J. McGraw, Dale F. DeNardo |
Publication Type | Article |
Publication Subtype | Journal Article |
Series Title | American Naturalist |
Index ID | 70047219 |
Record Source | USGS Publications Warehouse |
USGS Organization | Great Lakes Science Center |