An unexplained tsunami: Was there megathrust slip during the 2020 Mw7.6 Sand Point, Alaska, earthquake?
On October 19, 2020, the Mw7.6 Sand Point earthquake struck south of the Shumagin Islands in Alaska. Moment tensors indicate the earthquake was primarily strike-slip, yet the event produced an enigmatic tsunami that was larger and more widespread than expected for an earthquake of that magnitude and mechanism. Using a suite of hydrodynamic, seismic, and geodetic modeling techniques, we explore plausible causes of the tsunami. We find that strike-slip models consistent with the moment tensor orientation cannot produce the observed tsunami. Hydrodynamic inversion of sea surface deformation from deep ocean and tide gauge data suggest seafloor deformation more closely matches a megathrust, rather than a strike-slip, source. Static slip inversions, using sea level and Global Navigation Satellite System data, allow for a portion of co-seismic megathrust slip that can explain tsunamigenesis. Combining all available geophysical datasets to model the kinematic rupture, we show that considerable, relatively slow, megathrust slip is allowable in the Shumagin segment, concurrent with strike-slip faulting. We hypothesize that the slow megathrust rupture does not contribute much seismic radiation allowing it to previously go unnoticed with traditional seismic monitoring.
Citation Information
Publication Year | 2025 |
---|---|
Title | An unexplained tsunami: Was there megathrust slip during the 2020 Mw7.6 Sand Point, Alaska, earthquake? |
DOI | 10.26443/seismica.v4i1.1336 |
Authors | Sean R. Santellanes, Dara Elyse Goldberg, Pablo Koch, Diego Melgar, William L. Yeck, Brendan W. Crowell, Jiun-Ting Lin |
Publication Type | Article |
Publication Subtype | Journal Article |
Series Title | Seismica |
Index ID | 70264730 |
Record Source | USGS Publications Warehouse |
USGS Organization | Geologic Hazards Science Center - Seismology / Geomagnetism |