Skip to main content
U.S. flag

An official website of the United States government

Using global remote camera data of a solitary species complex to evaluate the drivers of group formation

March 11, 2024

The social system of animals involves a complex interplay between physiology, natural history, and the environment. Long relied upon discrete categorizations of “social” and “solitary” inhibit our capacity to understand species and their interactions with the world around them. Here, we use a globally distributed camera trapping dataset to test the drivers of aggregating into groups in a species complex (martens and relatives, family Mustelidae, Order Carnivora) assumed to be obligately solitary. We use a simple quantification, the probability of being detected in a group, that was applied across our globally derived camera trap dataset. Using a series of binomial generalized mixed-effects models applied to a dataset of 16,483 independent detections across 17 countries on four continents we test explicit hypotheses about potential drivers of group formation. We observe a wide range of probabilities of being detected in groups within the solitary model system, with the probability of aggregating in groups varying by more than an order of magnitude. We demonstrate that a species’ context-dependent proclivity toward aggregating in groups is underpinned by a range of resource-related factors, primarily the distribution of resources, with increasing patchiness of resources facilitating group formation, as well as interactions between environmental conditions (resource constancy/winter severity) and physiology (energy storage capabilities). The wide variation in propensities to aggregate with conspecifics observed here highlights how continued failure to recognize complexities in the social behaviors of apparently solitary species limits our understanding not only of the individual species but also the causes and consequences of group formation.

Publication Year 2024
Title Using global remote camera data of a solitary species complex to evaluate the drivers of group formation
DOI 10.1073/pnas.2312252121
Authors Joshua P. Twining, Chris Sutherland, Andrzej Zalewski, Michael V. Cove, Johnny Birks, Oliver R. Wearn, Jessica Haysom, Anna Wereszczuk, Emiliano Manzo, Paola Bartolommei, Alessio Mortelliti, Bryn Evans, Brian D. Gerber, Thomas J. McGreevy, Laken S. Ganoe, Juliana Masseloux, Amy E. Mayer, Izabela Wierzbowska, Jan Loch, Jocelyn Akins, Donovan Drummey, William McShea, Stephanie Manke, Lain Pardo, Andy Boyce, Sheng Li, Roslina Binti Ragai, Ronglarp Sukmasuang, Álvaro José Villafañe Trujillo, Carlos López-González, Nalleli Elvira Lara-Díaz, Olivia Cosby, Cristian N. Waggershauser, Jack Bamber, Frances Stewart, Jason Fisher, Angela K. Fuller, Kelly Perkins, Roger A. Powell
Publication Type Article
Publication Subtype Journal Article
Series Title PNAS
Index ID 70257433
Record Source USGS Publications Warehouse
USGS Organization Coop Res Unit Leetown
Was this page helpful?