Alexandra (Alex) Hatem
My research is focused on how to best describe the behavior of active faults in the recent past. I use methods such as paleoseismology, slip rate studies, topographic analysis, numerical modeling and tectonic reconstructions to understand how earthquakes occur in space and time, both on single faults and within larger fault systems.
Overall, I am interested in how faults evolve over time and characterizing variability and evolution of fault behavior on across different space-time scales. An overarching goal of my work is to understand how to represent geological constraints within hazard models, like the National Seismic Hazard Map and the Uniform California Earthquake Rupture Forecast.
Professional Experience
Research Geologist: USGS-GHSC, 2020-present
Mendenhall post-doctoral fellow: USGS-GHSC, 2019-2020
Education
PhD: University of Southern California, 2019
MS: University of Massachusetts, Amherst, 2014
BA: Wellesley College, 2012
Science and Products
Western U.S. geologic deformation model for use in the U.S. National Seismic Hazard Model 2023, version 1.0
Geodetic deformation model results and corrections for use in U.S. National Seismic Hazard Model 2023
Plotting multiple fault representations: Applications for National Seismic Hazard Model 2023 update (NSHM-faultmaps)
Compilation of geologic slip rate constraints used in 1996-2014 U.S. National Seismic Hazard Models (ver. 2.0, February 2022)
Earthquake geology inputs for the U.S. National Seismic Hazard Model (NSHM) 2023 (western US) (ver. 2.0, February 2022)
Summary of proposed changes to geologic inputs for the U.S. National Seismic Hazard Model (NSHM) 2023, version 1.0
Rapid surface rupture mapping from satellite data: The 2023 Kahramanmaraş, Turkey (Türkiye), earthquake sequence
Rapid characterization of the February 2023 Kahramanmaraş, Turkey, earthquake sequence
Preface to the focus section on deformation models for the U.S. National Seismic Hazard Model
Western U.S. deformation models for the 2023 update to the U.S. National Seismic Hazard Model
Western U.S. geologic deformation model for use in the U.S. National Seismic Hazard Model 2023
Simplifying complex fault data for systems-level analysis: Earthquake geology inputs for U.S. NSHM 2023
Non-USGS Publications**
**Disclaimer: The views expressed in Non-USGS publications are those of the author and do not represent the views of the USGS, Department of the Interior, or the U.S. Government.
Science and Products
Western U.S. geologic deformation model for use in the U.S. National Seismic Hazard Model 2023, version 1.0
Geodetic deformation model results and corrections for use in U.S. National Seismic Hazard Model 2023
Plotting multiple fault representations: Applications for National Seismic Hazard Model 2023 update (NSHM-faultmaps)
Compilation of geologic slip rate constraints used in 1996-2014 U.S. National Seismic Hazard Models (ver. 2.0, February 2022)
Earthquake geology inputs for the U.S. National Seismic Hazard Model (NSHM) 2023 (western US) (ver. 2.0, February 2022)
Summary of proposed changes to geologic inputs for the U.S. National Seismic Hazard Model (NSHM) 2023, version 1.0
Rapid surface rupture mapping from satellite data: The 2023 Kahramanmaraş, Turkey (Türkiye), earthquake sequence
Rapid characterization of the February 2023 Kahramanmaraş, Turkey, earthquake sequence
Preface to the focus section on deformation models for the U.S. National Seismic Hazard Model
Western U.S. deformation models for the 2023 update to the U.S. National Seismic Hazard Model
Western U.S. geologic deformation model for use in the U.S. National Seismic Hazard Model 2023
Simplifying complex fault data for systems-level analysis: Earthquake geology inputs for U.S. NSHM 2023
Non-USGS Publications**
**Disclaimer: The views expressed in Non-USGS publications are those of the author and do not represent the views of the USGS, Department of the Interior, or the U.S. Government.