Devin McPhillips, PhD
As an earthquake geologist, I investigate fault systems, fault activity, and ground shaking intensity. I am particularly interested in records of past earthquakes that are preserved in the landscape. My research methods include field observation, geochronology, and quantitative analysis. My goals are to quantify seismic hazard and reduce risk.
Professional Experience
Research Geologist: USGS-ESC, 2023-present
Geologist: USGS-ESC, 2016-2023
Research Associate: Syracuse University, 2013-2105
NSF Postdoctoral Fellow: University of Vermont, 2011-2013
Education and Certifications
PhD: Yale University, 2011
BA: Carleton College, 2003
Science and Products
Remote survey of fragile geologic features for use as earthquake ground motion constraints, Oregon and Washington, USA
Fragile geologic features (FGFs) are elements of the landscape that are vulnerable to destruction during sufficiently strong earthquake ground shaking. As result, the observation of extant FGFs on the landscape may constrain the maximum intensity of past earthquake shaking. McPhillips and Scharer (2022, Survey of fragile geologic features and their quasi-static earthquake ground motion...
Data release for spatial and temporal analysis of geologically derived fault slip rates, Cucamonga Fault, California, USA
This report summarizes the age-dating results from two alluvial fan surfaces (map units Qyf2 and Qyf3) that are broken by strands of the Cucamonga Fault, in southern California, at Day Canyon and Etiwanda Canyon. Within this report are detailed the methodology used to collect samples of rock and sediment, determine concentrations of cosmogenic beryllium-10 in purified quartz isolated...
Updated Compilation of VS30 Data for the United States
VS30, the time-averaged shear-wave velocity (VS) to a depth of 30 meters, is a key index adopted by the earthquake engineering community to account for seismic site conditions. VS30 is typically based on geophysical measurements of VS derived from invasive and noninvasive techniques at sites of interest. Owing to cost considerations, as well as logistical and environmental concerns, VS30...
Filter Total Items: 22
Spatial and temporal analysis of geologic slip rates, Cucamonga Fault, California, USA: Implications for along-strike applications and multi-fault rupture
To constrain fault processes and hazard, fault slip rates may be extrapolated over different fault lengths or time intervals. Here, we investigate slip rates for the Cucamonga Fault (CF). The CF is located at the junction of the Transverse Range fault system with the San Andreas and San Jacinto Faults, and it is hypothesized to connect with these faults, promoting the propagation of...
Authors
Devin McPhillips, Katherine M. Scharer
Survey of fragile geologic features and their quasi-static earthquake ground-motion constraints, southern Oregon
Fragile geologic features (FGFs), which are extant on the landscape but vulnerable to earthquake ground shaking, may provide geological constraints on the intensity of prior shaking. These empirical constraints are particularly important in regions such as the Pacific Northwest that have not experienced a megathrust earthquake in written history. Here, we describe our field survey of...
Authors
Devin McPhillips, Katherine M. Scharer
Revised earthquake recurrence intervals in California, USA: New paleoseismic sites and application of event likelihoods
Recurrence intervals for ground rupturing earthquakes are critical data for assessing seismic hazard. Recurrence intervals are presented here for 38 paleoseismic sites in California. Eleven of these include new or updated data; the remainder use data previously included in the Unified California Earthquake Rupture Forecast Version 3 (UCERF3). The methods and results are consistent with...
Authors
Devin McPhillips
Toppling of a Trona Pinnacles Spire following the M5.5 RidgecrestaAftershock of June 2020
The 2019 Mw 7.1 Ridgecrest California earthquake rupture passed within 4 km of the Trona Pinnacles, a large group of tufa rock pillars. Reconnaissance following the Ridgecrest mainshock documented fresh damage to several of the Pinnacles. Repeated aerial photogrammetric surveys also documented damage during subsequent aftershocks. Here, we describe the photogrammetric data with emphasis...
Authors
Andrea Donnellan, Joaquin Garcia-Suarez, Devin McPhillips, Domniki Asimaki, Christine A. Goulet, Xiaofeng Meng, Savannah Devine, Gregory Lyzanga
Holocene depositional history inferred from single-grain luminescence ages in southern California, North America
Significant sediment flux and deposition in a sedimentary system are influenced by climate changes, tectonics, lithology, and the sedimentary system's internal dynamics. Identifying the timing of depositional periods from stratigraphic records is a first step to critically evaluate the controls of sediment flux and deposition. Here, we show that ages of single-grain K-feldspar...
Authors
Sourav Saha, Seulgi Moon, Nathan D. Brown, Edward J. Rhodes, Katherine M. Scharer, Devin McPhillips, Sally F. McGill, Bryan A. Castillo
Prehistoric earthquakes on the Banning strand of the San Andreas fault, North Palm Springs, California
We studied a paleoseismic trench excavated in 2017 across the Banning strand of the San Andreas fault and herein provide the first detailed record of ground-breaking earthquakes on this important fault in Southern California. The trench exposed an ~40-m-wide fault zone cutting through alluvial sand, gravel, silt, and clay deposits. We evaluated the paleoseismic record using a new metric...
Authors
Bryan A. Castillo, Sally F. McGill, Katherine M. Scharer, Doug Yule, Devin McPhillips, James McNeil, Sourav Saha, Nathan D. Brown, Seulgi Moon
Science and Products
Remote survey of fragile geologic features for use as earthquake ground motion constraints, Oregon and Washington, USA
Fragile geologic features (FGFs) are elements of the landscape that are vulnerable to destruction during sufficiently strong earthquake ground shaking. As result, the observation of extant FGFs on the landscape may constrain the maximum intensity of past earthquake shaking. McPhillips and Scharer (2022, Survey of fragile geologic features and their quasi-static earthquake ground motion...
Data release for spatial and temporal analysis of geologically derived fault slip rates, Cucamonga Fault, California, USA
This report summarizes the age-dating results from two alluvial fan surfaces (map units Qyf2 and Qyf3) that are broken by strands of the Cucamonga Fault, in southern California, at Day Canyon and Etiwanda Canyon. Within this report are detailed the methodology used to collect samples of rock and sediment, determine concentrations of cosmogenic beryllium-10 in purified quartz isolated...
Updated Compilation of VS30 Data for the United States
VS30, the time-averaged shear-wave velocity (VS) to a depth of 30 meters, is a key index adopted by the earthquake engineering community to account for seismic site conditions. VS30 is typically based on geophysical measurements of VS derived from invasive and noninvasive techniques at sites of interest. Owing to cost considerations, as well as logistical and environmental concerns, VS30...
Filter Total Items: 22
Spatial and temporal analysis of geologic slip rates, Cucamonga Fault, California, USA: Implications for along-strike applications and multi-fault rupture
To constrain fault processes and hazard, fault slip rates may be extrapolated over different fault lengths or time intervals. Here, we investigate slip rates for the Cucamonga Fault (CF). The CF is located at the junction of the Transverse Range fault system with the San Andreas and San Jacinto Faults, and it is hypothesized to connect with these faults, promoting the propagation of...
Authors
Devin McPhillips, Katherine M. Scharer
Survey of fragile geologic features and their quasi-static earthquake ground-motion constraints, southern Oregon
Fragile geologic features (FGFs), which are extant on the landscape but vulnerable to earthquake ground shaking, may provide geological constraints on the intensity of prior shaking. These empirical constraints are particularly important in regions such as the Pacific Northwest that have not experienced a megathrust earthquake in written history. Here, we describe our field survey of...
Authors
Devin McPhillips, Katherine M. Scharer
Revised earthquake recurrence intervals in California, USA: New paleoseismic sites and application of event likelihoods
Recurrence intervals for ground rupturing earthquakes are critical data for assessing seismic hazard. Recurrence intervals are presented here for 38 paleoseismic sites in California. Eleven of these include new or updated data; the remainder use data previously included in the Unified California Earthquake Rupture Forecast Version 3 (UCERF3). The methods and results are consistent with...
Authors
Devin McPhillips
Toppling of a Trona Pinnacles Spire following the M5.5 RidgecrestaAftershock of June 2020
The 2019 Mw 7.1 Ridgecrest California earthquake rupture passed within 4 km of the Trona Pinnacles, a large group of tufa rock pillars. Reconnaissance following the Ridgecrest mainshock documented fresh damage to several of the Pinnacles. Repeated aerial photogrammetric surveys also documented damage during subsequent aftershocks. Here, we describe the photogrammetric data with emphasis...
Authors
Andrea Donnellan, Joaquin Garcia-Suarez, Devin McPhillips, Domniki Asimaki, Christine A. Goulet, Xiaofeng Meng, Savannah Devine, Gregory Lyzanga
Holocene depositional history inferred from single-grain luminescence ages in southern California, North America
Significant sediment flux and deposition in a sedimentary system are influenced by climate changes, tectonics, lithology, and the sedimentary system's internal dynamics. Identifying the timing of depositional periods from stratigraphic records is a first step to critically evaluate the controls of sediment flux and deposition. Here, we show that ages of single-grain K-feldspar...
Authors
Sourav Saha, Seulgi Moon, Nathan D. Brown, Edward J. Rhodes, Katherine M. Scharer, Devin McPhillips, Sally F. McGill, Bryan A. Castillo
Prehistoric earthquakes on the Banning strand of the San Andreas fault, North Palm Springs, California
We studied a paleoseismic trench excavated in 2017 across the Banning strand of the San Andreas fault and herein provide the first detailed record of ground-breaking earthquakes on this important fault in Southern California. The trench exposed an ~40-m-wide fault zone cutting through alluvial sand, gravel, silt, and clay deposits. We evaluated the paleoseismic record using a new metric...
Authors
Bryan A. Castillo, Sally F. McGill, Katherine M. Scharer, Doug Yule, Devin McPhillips, James McNeil, Sourav Saha, Nathan D. Brown, Seulgi Moon