John Ellis (Former Employee)
Science and Products
Simulation of Groundwater Flow, and Analysis of Projected Water Use for the Rush Springs Aquifer, Western Oklahoma
In 2018 The U.S. Geological Survey, in cooperation with the U.S. Bureau of Reclamation and the Oklahoma Water Resources Board, published a calibrated numerical groundwater- flow model and associated model documentation report that evaluated the effects of potential groundwater withdrawals on groundwater flow and availability in the Rush Springs aquifer in western Oklahoma. The results of...
Hydrogeology, numerical simulation of groundwater flow, and effects of future water use and drought for reach 1 of the Washita River alluvial aquifer, Roger Mills and Custer Counties, western Oklahoma, 1980–2015
The Washita River alluvial aquifer is a valley-fill and terrace alluvial aquifer along the valley of the Washita River in western Oklahoma that provides a productive source of groundwater for agricultural irrigation and water supply. The Oklahoma Water Resources Board (OWRB) has designated the westernmost section of the aquifer in Roger Mills and Custer Counties, Okla., as reach 1 of the...
Authors
J.H. Ellis, Derek W. Ryter, Leland T. Fuhrig, Kyle W. Spears, Shana L. Mashburn, Ian M.J. Rogers
Evaluating the effects of downscaled climate projections on groundwater storage and simulated base-flow contribution to the North Fork Red River and Lake Altus, southwest Oklahoma (USA)
Potential effects of projected climate variability on base flow and groundwater storage in the North Fork Red River aquifer, Oklahoma (USA), were estimated using downscaled climate model data coupled with a numerical groundwater-flow model. The North Fork Red River aquifer discharges groundwater to the North Fork Red River, which provides inflow to Lake Altus. To approximate future...
Authors
L.G. Labriola, J.H. Ellis, Subhrendu Gangopadhyay, Tom Pruitt, Pierre-Emmanuel Kirstetter, Yang Hong
Simulation of groundwater flow and analysis of projected water use for the Rush Springs aquifer, western Oklahoma
The U.S. Geological Survey, in cooperation with the Bureau of Reclamation and the Oklahoma Water Resources Board, (1) quantified the groundwater resources of the Rush Springs aquifer in western Oklahoma by developing a numerical groundwater-flow model, (2) evaluated the effects of estimated equal-proportionate-share (EPS) pumping rates on aquifer storage and streamflow for time periods...
Authors
J.H. Ellis
Hydrogeology and simulated groundwater flow and availability in the North Fork Red River aquifer, southwest Oklahoma, 1980–2013
On September 8, 1981, the Oklahoma Water Resources Board established regulatory limits on the maximum annual yield of groundwater (343,042 acre-feet per year) and equal-proportionate-share (EPS) pumping rate (1.0 acre-foot per acre per year) for the North Fork Red River aquifer. The maximum annual yield and EPS were based on a hydrologic investigation that used a numerical groundwater...
Authors
S. Jerrod Smith, J.H. Ellis, Derrick L. Wagner, Steven M. Peterson
Hydrogeology and simulation of groundwater flow and analysis of projected water use for the Canadian River alluvial aquifer, western and central Oklahoma
This report describes a study of the hydrogeology and simulation of groundwater flow for the Canadian River alluvial aquifer in western and central Oklahoma conducted by the U.S. Geological Survey in cooperation with the Oklahoma Water Resources Board. The report (1) quantifies the groundwater resources of the Canadian River alluvial aquifer by developing a conceptual model, (2)...
Authors
J.H. Ellis, Shana L. Mashburn, Grant M. Graves, Steven M. Peterson, S. Jerrod Smith, Leland T. Fuhrig, Derrick L. Wagner, Jon E. Sanford
Science and Products
Simulation of Groundwater Flow, and Analysis of Projected Water Use for the Rush Springs Aquifer, Western Oklahoma
In 2018 The U.S. Geological Survey, in cooperation with the U.S. Bureau of Reclamation and the Oklahoma Water Resources Board, published a calibrated numerical groundwater- flow model and associated model documentation report that evaluated the effects of potential groundwater withdrawals on groundwater flow and availability in the Rush Springs aquifer in western Oklahoma. The results of...
Hydrogeology, numerical simulation of groundwater flow, and effects of future water use and drought for reach 1 of the Washita River alluvial aquifer, Roger Mills and Custer Counties, western Oklahoma, 1980–2015
The Washita River alluvial aquifer is a valley-fill and terrace alluvial aquifer along the valley of the Washita River in western Oklahoma that provides a productive source of groundwater for agricultural irrigation and water supply. The Oklahoma Water Resources Board (OWRB) has designated the westernmost section of the aquifer in Roger Mills and Custer Counties, Okla., as reach 1 of the...
Authors
J.H. Ellis, Derek W. Ryter, Leland T. Fuhrig, Kyle W. Spears, Shana L. Mashburn, Ian M.J. Rogers
Evaluating the effects of downscaled climate projections on groundwater storage and simulated base-flow contribution to the North Fork Red River and Lake Altus, southwest Oklahoma (USA)
Potential effects of projected climate variability on base flow and groundwater storage in the North Fork Red River aquifer, Oklahoma (USA), were estimated using downscaled climate model data coupled with a numerical groundwater-flow model. The North Fork Red River aquifer discharges groundwater to the North Fork Red River, which provides inflow to Lake Altus. To approximate future...
Authors
L.G. Labriola, J.H. Ellis, Subhrendu Gangopadhyay, Tom Pruitt, Pierre-Emmanuel Kirstetter, Yang Hong
Simulation of groundwater flow and analysis of projected water use for the Rush Springs aquifer, western Oklahoma
The U.S. Geological Survey, in cooperation with the Bureau of Reclamation and the Oklahoma Water Resources Board, (1) quantified the groundwater resources of the Rush Springs aquifer in western Oklahoma by developing a numerical groundwater-flow model, (2) evaluated the effects of estimated equal-proportionate-share (EPS) pumping rates on aquifer storage and streamflow for time periods...
Authors
J.H. Ellis
Hydrogeology and simulated groundwater flow and availability in the North Fork Red River aquifer, southwest Oklahoma, 1980–2013
On September 8, 1981, the Oklahoma Water Resources Board established regulatory limits on the maximum annual yield of groundwater (343,042 acre-feet per year) and equal-proportionate-share (EPS) pumping rate (1.0 acre-foot per acre per year) for the North Fork Red River aquifer. The maximum annual yield and EPS were based on a hydrologic investigation that used a numerical groundwater...
Authors
S. Jerrod Smith, J.H. Ellis, Derrick L. Wagner, Steven M. Peterson
Hydrogeology and simulation of groundwater flow and analysis of projected water use for the Canadian River alluvial aquifer, western and central Oklahoma
This report describes a study of the hydrogeology and simulation of groundwater flow for the Canadian River alluvial aquifer in western and central Oklahoma conducted by the U.S. Geological Survey in cooperation with the Oklahoma Water Resources Board. The report (1) quantifies the groundwater resources of the Canadian River alluvial aquifer by developing a conceptual model, (2)...
Authors
J.H. Ellis, Shana L. Mashburn, Grant M. Graves, Steven M. Peterson, S. Jerrod Smith, Leland T. Fuhrig, Derrick L. Wagner, Jon E. Sanford