Kevin D Kroeger, PhD (Former Employee)
Science and Products
Environmental Geochemistry
Coastal Environmental Geochemistry research at the Woods Hole Coastal and Marine Science Center spans multiple ecosystems and topics, including coastal wetlands, aquifers, and estuaries, with the goal of providing data and guidance to federal, state, local, and private land owners and managers on these vital ecosystems.
Advancing understanding of ecosystem responses to climate change with warming experiments: what we have learned and what is unknown?
Advancing our mechanistic understanding of ecosystem responses to climate change is critical to improve ecological theories, develop predictive models to simulate ecosystem processes, and inform sound policies to manage ecosystems and human activities. Manipulation of temperature in the field, or the “ecosystem warming experiment,” has proved to be a powerful tool to understand ecosystem...
Filter Total Items: 23
Static chamber gas fluxes and carbon and nitrogen isotope content of age-dated sediment cores from a Phragmites wetland in Sage Lot Pond, Massachusetts, 2013-2015
Coastal wetlands are major global carbon sinks, however, they are heterogeneous and dynamic ecosystems. To characterize spatial and temporal variability in a New England salt marsh, static chamber measurements of greenhouse gas (GHG) fluxes were compared among major plant-defined zones (high marsh dominated by Distichlis spicata and a zone of invasive Phragmites australis) during 2013...
Geochemical data supporting analysis of fate and transport of nitrogen in the near shore groundwater and subterranean estuary near East Falmouth, Massachusetts, 2015
Geochemical data were obtained to investigate the fate and transport of nitrogen in a subterranean estuary near East Falmouth, Massachusetts. The goal of this investigation was to assess nitrogen attenuation in the aquifer under the Eel River Estuary and the adjacent peninsula that was densely populated with residences having septic systems and legacy cesspool inputs of inorganic...
Collection, analysis, and age-dating of sediment cores from Herring River wetlands and other nearby wetlands in Wellfleet, Massachusetts, 2015-17
The Herring River estuary in Wellfleet, Cape Cod, Massachusetts, has been tidally restricted for more than a century by a dike constructed near the mouth of the river. Upstream from the dike, the tidal restriction has caused the conversion of salt marsh wetlands to various other ecosystems including impounded freshwater marshes, flooded shrub land, drained forested upland, and brackish...
Collection, Analysis, and Age-Dating of Sediment Cores from Salt Marshes, Rhode Island, 2016
The accretion history of fringing salt marshes in Narragansett Bay, Rhode Island, was reconstructed from sediment cores. Age models, based on excess lead-210 and cesium-137 radionuclide analysis, were constructed to evaluate how vertical accretion and carbon burial rates have changed during the past century. The Constant Rate of Supply (CRS) age model was used to date six cores collected...
Collection, analysis, and age-dating of sediment cores from natural and restored salt marshes on Cape Cod, Massachusetts, 2015-16
Nineteen sediment cores were collected from five salt marshes on the northern shore of Cape Cod where previously restricted tidal exchange was restored to part of the marshes. Cores were collected in duplicate from two locations within each marsh complex: one upstream and one downstream from the former tidal restriction (typically caused by an undersized culvert or a berm). The unaltered...
Collection, analysis, and age-dating of sediment cores from mangrove and salt marsh ecosystems in Tampa Bay, Florida, 2015
Coastal wetlands in Tampa Bay, Florida, are important ecosystems that deliver a variety of ecosystem services. Key to ecosystem functioning is wetland response to sea-level rise through accumulation of mineral and organic sediment. The organic sediment within coastal wetlands is composed of carbon sequestered over the time scale of the wetland’s existence. This study was conducted to...
Filter Total Items: 68
Carbonate chemistry and carbon sequestration driven by inorganic carbon outwelling from mangroves and saltmarshes
Mangroves and saltmarshes are biogeochemical hotspots storing carbon in sediments and in the ocean following lateral carbon export (outwelling). Coastal seawater pH is modified by both uptake of anthropogenic carbon dioxide and natural biogeochemical processes, e.g., wetland inputs. Here, we investigate how mangroves and saltmarshes influence coastal carbonate chemistry and quantify the...
Authors
Gloria Reithmaier, Alex Cabral, Anirban Akhand, Matthew J. Bogard, Alberto V. Borges, Steven Bouillon, David J. Burdige, Mitchel Call, Nengwang Chen, Xiaogang Chen, Jr. Cotovicz, Meagan J. Eagle, Erik Kristensen, Kevin Kroeger, Zeyang Lu, Damien T. Maher, Lucas Pérez-Lloréns, Raghab Ray, Pierre Taillardat, Joseph Tamborski, Robert C. Upstill-Goddard, Faming Wang, Zhaohui Aleck Wang, Kai Xiao, Yvonne Yau, Isaac Santos
Practical guide to measuring wetland carbon pools and fluxes
Wetlands cover a small portion of the world, but have disproportionate influence on global carbon (C) sequestration, carbon dioxide and methane emissions, and aquatic C fluxes. However, the underlying biogeochemical processes that affect wetland C pools and fluxes are complex and dynamic, making measurements of wetland C challenging. Over decades of research, many observational...
Authors
Sheel Bansal, Irean Creed, Brian Tangen, Scott D. Bridgham, Ankur R. Desai, Ken W. Krauss, Scott C Neubauer, Gregory Noe, Donald Rosenberry, Carl C. Trettin, Kimberly Wickland, Scott T. Allen, Ariane Arias-Ortiz, Anna R. Armitage, Dennis Baldocchi, Kakoli Banerjee, David Bastviken, Peter Berg, Matthew J. Bogard, Alex T. Chow, William H. Conner, Christopher Craft, Courtney Creamer, Tonya Delsontro, Jamie Duberstein, Meagan J. Eagle, M. Siobhan Fennessey, Sarah A. Finkelstein, Mathias Goeckede, Sabine Grunwald, Meghan Halibisky, Ellen R. Herbert, Mohammad Jahangir, Olivia Fayne Johnson, Miriam C. Jones, Jeffrey Kelleway, Sarah Knox, Kevin Kroeger, Kevin Kuehn, David Lobb, Amanda Loder, Shizhou Ma, Damien T. Maher, Gavin McNicol, Jacob Meier, Beth A Middleton, Christopher T. Mills, Purbasha Mistry, Abhijith Mitra, Courtney Mobilian, Amanda M. Nahlik, Sue Newman, Jessica O'Connell, Patty Oikawa, Max Post van der Burg, Charles Schutte, Chanchung Song, Camille L. Stagg, Jessica Turner, Rodrigo Vargas, Mark P. Waldrop, Markus Wallin, Zhaohui Aleck Wang, Eric Ward, Debra A. Willard, Stephanie A. Yarwood, Xiaoyan Zhu
By
Ecosystems Mission Area, Water Resources Mission Area, Ecosystems Land Change Science Program, Florence Bascom Geoscience Center, Geology, Minerals, Energy, and Geophysics Science Center, Geosciences and Environmental Change Science Center, Northern Prairie Wildlife Research Center, Wetland and Aquatic Research Center , Woods Hole Coastal and Marine Science Center
Geologic carbon management options for the North Atlantic-Appalachian Region
IntroductionThe U.S. Geological Survey (USGS) North Atlantic-Appalachian Region is developing the regionwide capacity to provide timely science support for decision-makers attempting to enhance carbon removal, sequestration, and emissions mitigation to meet national atmospheric carbon reduction goals. The U.S. Environmental Protection Agency (EPA) reported that in 2021, the fourteen...
Authors
Peter D. Warwick, Madalyn Blondes, Sean T. Brennan, Steven M. Cahan, C. Özgen Karacan, Kevin Kroeger, Matthew D. Merrill
Mapping methane reduction potential of tidal wetland restoration in the United States
Coastal wetlands can emit excess methane in cases where they are impounded and artificially freshened by structures that impede tidal exchange. We provide a new assessment of coastal methane reduction opportunities for the contiguous United States by combining multiple publicly available map layers, reassessing greenhouse gas emissions datasets, and applying scenarios informed by...
Authors
James Holmquist, Meagan J. Eagle, Rebecca Molinari, Sydney K. Nick, Liana Stachowicz, Kevin Kroeger
High-frequency variability of carbon dioxide fluxes in tidal water over a temperate salt marsh
Existing analyses of salt marsh carbon budgets rarely quantify carbon loss as CO2 through the air–water interface in inundated marshes. This study estimates the variability of partial pressure of CO2 (pCO2) and air–water CO2 fluxes over summer and fall of 2014 and 2015 using high-frequency measurements of tidal water pCO2 in a salt marsh of the U.S. northeast region. Monthly mean CO2...
Authors
Shuzhen Song, Zhaohui Aleck Wang, Kevin Kroeger, Meagan J. Eagle, Sophie N. Chu, Jianzhong Ge
Forecasting sea level rise-driven inundation in diked and tidally restricted coastal lowlands
Diked and drained coastal lowlands rely on hydraulic and protective infrastructure that may not function as designed in areas with relative sea-level rise. The slow and incremental loss of the hydraulic conditions required for a well-drained system make it difficult to identify if and when the flow structures no longer discharge enough water, especially in tidal settings where two-way...
Authors
Kevin Befus, A Kurnizki, Kevin Kroeger, Meagan J. Eagle, Timothy P. Smith
Science and Products
Environmental Geochemistry
Coastal Environmental Geochemistry research at the Woods Hole Coastal and Marine Science Center spans multiple ecosystems and topics, including coastal wetlands, aquifers, and estuaries, with the goal of providing data and guidance to federal, state, local, and private land owners and managers on these vital ecosystems.
Advancing understanding of ecosystem responses to climate change with warming experiments: what we have learned and what is unknown?
Advancing our mechanistic understanding of ecosystem responses to climate change is critical to improve ecological theories, develop predictive models to simulate ecosystem processes, and inform sound policies to manage ecosystems and human activities. Manipulation of temperature in the field, or the “ecosystem warming experiment,” has proved to be a powerful tool to understand ecosystem...
Filter Total Items: 23
Static chamber gas fluxes and carbon and nitrogen isotope content of age-dated sediment cores from a Phragmites wetland in Sage Lot Pond, Massachusetts, 2013-2015
Coastal wetlands are major global carbon sinks, however, they are heterogeneous and dynamic ecosystems. To characterize spatial and temporal variability in a New England salt marsh, static chamber measurements of greenhouse gas (GHG) fluxes were compared among major plant-defined zones (high marsh dominated by Distichlis spicata and a zone of invasive Phragmites australis) during 2013...
Geochemical data supporting analysis of fate and transport of nitrogen in the near shore groundwater and subterranean estuary near East Falmouth, Massachusetts, 2015
Geochemical data were obtained to investigate the fate and transport of nitrogen in a subterranean estuary near East Falmouth, Massachusetts. The goal of this investigation was to assess nitrogen attenuation in the aquifer under the Eel River Estuary and the adjacent peninsula that was densely populated with residences having septic systems and legacy cesspool inputs of inorganic...
Collection, analysis, and age-dating of sediment cores from Herring River wetlands and other nearby wetlands in Wellfleet, Massachusetts, 2015-17
The Herring River estuary in Wellfleet, Cape Cod, Massachusetts, has been tidally restricted for more than a century by a dike constructed near the mouth of the river. Upstream from the dike, the tidal restriction has caused the conversion of salt marsh wetlands to various other ecosystems including impounded freshwater marshes, flooded shrub land, drained forested upland, and brackish...
Collection, Analysis, and Age-Dating of Sediment Cores from Salt Marshes, Rhode Island, 2016
The accretion history of fringing salt marshes in Narragansett Bay, Rhode Island, was reconstructed from sediment cores. Age models, based on excess lead-210 and cesium-137 radionuclide analysis, were constructed to evaluate how vertical accretion and carbon burial rates have changed during the past century. The Constant Rate of Supply (CRS) age model was used to date six cores collected...
Collection, analysis, and age-dating of sediment cores from natural and restored salt marshes on Cape Cod, Massachusetts, 2015-16
Nineteen sediment cores were collected from five salt marshes on the northern shore of Cape Cod where previously restricted tidal exchange was restored to part of the marshes. Cores were collected in duplicate from two locations within each marsh complex: one upstream and one downstream from the former tidal restriction (typically caused by an undersized culvert or a berm). The unaltered...
Collection, analysis, and age-dating of sediment cores from mangrove and salt marsh ecosystems in Tampa Bay, Florida, 2015
Coastal wetlands in Tampa Bay, Florida, are important ecosystems that deliver a variety of ecosystem services. Key to ecosystem functioning is wetland response to sea-level rise through accumulation of mineral and organic sediment. The organic sediment within coastal wetlands is composed of carbon sequestered over the time scale of the wetland’s existence. This study was conducted to...
Filter Total Items: 68
Carbonate chemistry and carbon sequestration driven by inorganic carbon outwelling from mangroves and saltmarshes
Mangroves and saltmarshes are biogeochemical hotspots storing carbon in sediments and in the ocean following lateral carbon export (outwelling). Coastal seawater pH is modified by both uptake of anthropogenic carbon dioxide and natural biogeochemical processes, e.g., wetland inputs. Here, we investigate how mangroves and saltmarshes influence coastal carbonate chemistry and quantify the...
Authors
Gloria Reithmaier, Alex Cabral, Anirban Akhand, Matthew J. Bogard, Alberto V. Borges, Steven Bouillon, David J. Burdige, Mitchel Call, Nengwang Chen, Xiaogang Chen, Jr. Cotovicz, Meagan J. Eagle, Erik Kristensen, Kevin Kroeger, Zeyang Lu, Damien T. Maher, Lucas Pérez-Lloréns, Raghab Ray, Pierre Taillardat, Joseph Tamborski, Robert C. Upstill-Goddard, Faming Wang, Zhaohui Aleck Wang, Kai Xiao, Yvonne Yau, Isaac Santos
Practical guide to measuring wetland carbon pools and fluxes
Wetlands cover a small portion of the world, but have disproportionate influence on global carbon (C) sequestration, carbon dioxide and methane emissions, and aquatic C fluxes. However, the underlying biogeochemical processes that affect wetland C pools and fluxes are complex and dynamic, making measurements of wetland C challenging. Over decades of research, many observational...
Authors
Sheel Bansal, Irean Creed, Brian Tangen, Scott D. Bridgham, Ankur R. Desai, Ken W. Krauss, Scott C Neubauer, Gregory Noe, Donald Rosenberry, Carl C. Trettin, Kimberly Wickland, Scott T. Allen, Ariane Arias-Ortiz, Anna R. Armitage, Dennis Baldocchi, Kakoli Banerjee, David Bastviken, Peter Berg, Matthew J. Bogard, Alex T. Chow, William H. Conner, Christopher Craft, Courtney Creamer, Tonya Delsontro, Jamie Duberstein, Meagan J. Eagle, M. Siobhan Fennessey, Sarah A. Finkelstein, Mathias Goeckede, Sabine Grunwald, Meghan Halibisky, Ellen R. Herbert, Mohammad Jahangir, Olivia Fayne Johnson, Miriam C. Jones, Jeffrey Kelleway, Sarah Knox, Kevin Kroeger, Kevin Kuehn, David Lobb, Amanda Loder, Shizhou Ma, Damien T. Maher, Gavin McNicol, Jacob Meier, Beth A Middleton, Christopher T. Mills, Purbasha Mistry, Abhijith Mitra, Courtney Mobilian, Amanda M. Nahlik, Sue Newman, Jessica O'Connell, Patty Oikawa, Max Post van der Burg, Charles Schutte, Chanchung Song, Camille L. Stagg, Jessica Turner, Rodrigo Vargas, Mark P. Waldrop, Markus Wallin, Zhaohui Aleck Wang, Eric Ward, Debra A. Willard, Stephanie A. Yarwood, Xiaoyan Zhu
By
Ecosystems Mission Area, Water Resources Mission Area, Ecosystems Land Change Science Program, Florence Bascom Geoscience Center, Geology, Minerals, Energy, and Geophysics Science Center, Geosciences and Environmental Change Science Center, Northern Prairie Wildlife Research Center, Wetland and Aquatic Research Center , Woods Hole Coastal and Marine Science Center
Geologic carbon management options for the North Atlantic-Appalachian Region
IntroductionThe U.S. Geological Survey (USGS) North Atlantic-Appalachian Region is developing the regionwide capacity to provide timely science support for decision-makers attempting to enhance carbon removal, sequestration, and emissions mitigation to meet national atmospheric carbon reduction goals. The U.S. Environmental Protection Agency (EPA) reported that in 2021, the fourteen...
Authors
Peter D. Warwick, Madalyn Blondes, Sean T. Brennan, Steven M. Cahan, C. Özgen Karacan, Kevin Kroeger, Matthew D. Merrill
Mapping methane reduction potential of tidal wetland restoration in the United States
Coastal wetlands can emit excess methane in cases where they are impounded and artificially freshened by structures that impede tidal exchange. We provide a new assessment of coastal methane reduction opportunities for the contiguous United States by combining multiple publicly available map layers, reassessing greenhouse gas emissions datasets, and applying scenarios informed by...
Authors
James Holmquist, Meagan J. Eagle, Rebecca Molinari, Sydney K. Nick, Liana Stachowicz, Kevin Kroeger
High-frequency variability of carbon dioxide fluxes in tidal water over a temperate salt marsh
Existing analyses of salt marsh carbon budgets rarely quantify carbon loss as CO2 through the air–water interface in inundated marshes. This study estimates the variability of partial pressure of CO2 (pCO2) and air–water CO2 fluxes over summer and fall of 2014 and 2015 using high-frequency measurements of tidal water pCO2 in a salt marsh of the U.S. northeast region. Monthly mean CO2...
Authors
Shuzhen Song, Zhaohui Aleck Wang, Kevin Kroeger, Meagan J. Eagle, Sophie N. Chu, Jianzhong Ge
Forecasting sea level rise-driven inundation in diked and tidally restricted coastal lowlands
Diked and drained coastal lowlands rely on hydraulic and protective infrastructure that may not function as designed in areas with relative sea-level rise. The slow and incremental loss of the hydraulic conditions required for a well-drained system make it difficult to identify if and when the flow structures no longer discharge enough water, especially in tidal settings where two-way...
Authors
Kevin Befus, A Kurnizki, Kevin Kroeger, Meagan J. Eagle, Timothy P. Smith
*Disclaimer: Listing outside positions with professional scientific organizations on this Staff Profile are for informational purposes only and do not constitute an endorsement of those professional scientific organizations or their activities by the USGS, Department of the Interior, or U.S. Government