Skip to main content
U.S. flag

An official website of the United States government

Land Subsidence

Filter Total Items: 27

Subsidence in the Sacramento-San Joaquin Delta

The Sacramento-San Joaquin Delta is part of the San Francisco Estuary, home to a diverse flora and fauna, including several threatened and endangered species, has a large area of prime farmland, and serves as the hub of California's freshwater-delivery system that moves water from the wet north to the dry southern part of the State.
link

Subsidence in the Sacramento-San Joaquin Delta

The Sacramento-San Joaquin Delta is part of the San Francisco Estuary, home to a diverse flora and fauna, including several threatened and endangered species, has a large area of prime farmland, and serves as the hub of California's freshwater-delivery system that moves water from the wet north to the dry southern part of the State.
Learn More

Extensometers and Compaction

Extensometers measure the compaction and expansion of the aquifer system, providing depth-specific data that can help CAWSC scientists better understand the rate, extent, and at what depths in the system subsidence is occurring.
link

Extensometers and Compaction

Extensometers measure the compaction and expansion of the aquifer system, providing depth-specific data that can help CAWSC scientists better understand the rate, extent, and at what depths in the system subsidence is occurring.
Learn More

Investigation of Linkages Between Management Practices Used in Sacramento-San Joaquin Delta Rice Production and Loads of Dissolved Organic Matter and Disinfection Byproduct Precursors

The primary objective of this study is to expand our current understanding of how to manage rice production in the Sacramento-San Joaquin Delta in a manner that minimizes loads of water quality contaminants to Delta waters.
link

Investigation of Linkages Between Management Practices Used in Sacramento-San Joaquin Delta Rice Production and Loads of Dissolved Organic Matter and Disinfection Byproduct Precursors

The primary objective of this study is to expand our current understanding of how to manage rice production in the Sacramento-San Joaquin Delta in a manner that minimizes loads of water quality contaminants to Delta waters.
Learn More

Mojave Land-Subsidence Studies

Land subsidence has been ongoing in the dry lake beds throughout the Mojave and Morongo groundwater basins since the 1960s. In a study conducted from 2004 - 2009, continuous GPS stations were added to interferometric synthetic aperture radar (InSAR) methods to measure changes in land surface altitude.
link

Mojave Land-Subsidence Studies

Land subsidence has been ongoing in the dry lake beds throughout the Mojave and Morongo groundwater basins since the 1960s. In a study conducted from 2004 - 2009, continuous GPS stations were added to interferometric synthetic aperture radar (InSAR) methods to measure changes in land surface altitude.
Learn More

Land Subsidence in the Coachella Valley

Groundwater is an important water-supply source in the Coachella Valley. The demand for water has exceeded the deliveries of imported surface water, and groundwater levels have been declining as a result of increased pumping. A network of GPS stations has been set up in the valley to monitor subsidence resulting from declining groundwater levels.
link

Land Subsidence in the Coachella Valley

Groundwater is an important water-supply source in the Coachella Valley. The demand for water has exceeded the deliveries of imported surface water, and groundwater levels have been declining as a result of increased pumping. A network of GPS stations has been set up in the valley to monitor subsidence resulting from declining groundwater levels.
Learn More

Delta-Mendota Canal: Using Groundwater Modeling to Analyze Land Subsidence

A numerical modeling approach was used to quantify groundwater conditions and land subsidence spatially along the Delta-Mendota Canal. In addition, selected management alternatives for controlling land subsidence were evaluated.
link

Delta-Mendota Canal: Using Groundwater Modeling to Analyze Land Subsidence

A numerical modeling approach was used to quantify groundwater conditions and land subsidence spatially along the Delta-Mendota Canal. In addition, selected management alternatives for controlling land subsidence were evaluated.
Learn More

Delta-Mendota Canal: Evaluation of Groundwater Conditions and Land Subsidence

In areas adjacent to the Delta-Mendota Canal (DMC), extensive groundwater withdrawal from the San Joaquin Valley aquifer system has caused areas of the ground to sink as much as 10 feet, a process known as land subsidence. This could result in serious operational and structural issues for the Delta-Mendota Canal (DMC). In response, the USGS is studying and providing information on groundwater...
link

Delta-Mendota Canal: Evaluation of Groundwater Conditions and Land Subsidence

In areas adjacent to the Delta-Mendota Canal (DMC), extensive groundwater withdrawal from the San Joaquin Valley aquifer system has caused areas of the ground to sink as much as 10 feet, a process known as land subsidence. This could result in serious operational and structural issues for the Delta-Mendota Canal (DMC). In response, the USGS is studying and providing information on groundwater...
Learn More

Land Subsidence Along the California Aqueduct

Subsidence is a global problem and, in the United States, more than 17,000 square miles in 45 States, an area roughly the size of New Hampshire and Vermont combined, have been directly affected by subsidence. More than 80 percent of the identified subsidence in the United States is a consequence of human impact on subsurface water.
link

Land Subsidence Along the California Aqueduct

Subsidence is a global problem and, in the United States, more than 17,000 square miles in 45 States, an area roughly the size of New Hampshire and Vermont combined, have been directly affected by subsidence. More than 80 percent of the identified subsidence in the United States is a consequence of human impact on subsurface water.
Learn More

Piezometers and Groundwater Levels

Measurements of elevations, aquifer-system compaction, and water levels are used to improve our understanding of the processes responsible for land-surface elevation changes. Elevation or elevation-change measurements are fundamental to monitoring land subsidence.
link

Piezometers and Groundwater Levels

Measurements of elevations, aquifer-system compaction, and water levels are used to improve our understanding of the processes responsible for land-surface elevation changes. Elevation or elevation-change measurements are fundamental to monitoring land subsidence.
Learn More

Simulating Land Subsidence

The California Water Science Center has been involved in multiple studies simulating land subsidence associated with groundwater withdrawal. The simulations can be used to estimate the magnitude, location, and timing of subsidence. They can also be used to evaluate management strategies to mitigate adverse effects from subsidence while also optimizing water availability.
link

Simulating Land Subsidence

The California Water Science Center has been involved in multiple studies simulating land subsidence associated with groundwater withdrawal. The simulations can be used to estimate the magnitude, location, and timing of subsidence. They can also be used to evaluate management strategies to mitigate adverse effects from subsidence while also optimizing water availability.
Learn More

Using Numerical Models to Simulate Subsidence

The California Water Science Center has been involved in multiple studies simulating land subsidence associated with groundwater withdrawal. The simulations can be used to estimate the magnitude, location, and timing of subsidence. They can also be used to evaluate management strategies to mitigate adverse effects from subsidence while also optimizing water availability.
link

Using Numerical Models to Simulate Subsidence

The California Water Science Center has been involved in multiple studies simulating land subsidence associated with groundwater withdrawal. The simulations can be used to estimate the magnitude, location, and timing of subsidence. They can also be used to evaluate management strategies to mitigate adverse effects from subsidence while also optimizing water availability.
Learn More

Decomposition of Organic Soils in the Sacramento-San Joaquin Delta

The Sacramento-San Joaquin Delta of California was once a great tidal freshwater marsh. It is blanketed by peat and peaty alluvium deposited where streams originating in the Sierra Nevada, Coast Ranges, and South Cascade Range enter San Francisco Bay. In the late 1800s, levees were built along the stream channels, and the land thus protected from flooding was drained, cleared, and planted (...
link

Decomposition of Organic Soils in the Sacramento-San Joaquin Delta

The Sacramento-San Joaquin Delta of California was once a great tidal freshwater marsh. It is blanketed by peat and peaty alluvium deposited where streams originating in the Sierra Nevada, Coast Ranges, and South Cascade Range enter San Francisco Bay. In the late 1800s, levees were built along the stream channels, and the land thus protected from flooding was drained, cleared, and planted (...
Learn More