Skip to main content
U.S. flag

An official website of the United States government

Chesapeake Bay Activities

The Chesapeake Bay is our Nation’s largest estuary and provides over $100 billion in annual economic value. The USGS works with Federal, State, local, and academic partners to provide research and monitoring and to communicate results to inform management for the Chesapeake and other important landscapes across the Nation.

News

In Virginia, flooding aggravates woes of troubled Appomattox River

In Virginia, flooding aggravates woes of troubled Appomattox River

Massive new study says ospreys are thriving in some parts of the Chesapeake Bay – but not enough

Massive new study says ospreys are thriving in some parts of the Chesapeake Bay – but not enough

Fall 2025 Newsletter - In The Flow

Fall 2025 Newsletter - In The Flow

Publications

Using monitoring and partnerships to provide management-relevant information about Chesapeake Bay rivers Using monitoring and partnerships to provide management-relevant information about Chesapeake Bay rivers

The lands and waters of the Chesapeake Bay watershed provide more than $100 billion in economic benefits- an amount that is expected to increase by achieving the region’s clean-water goals. Achieving those goals requires accurate and timely information about the health of the watershed’s rivers and streams. The Chesapeake Bay nontidal monitoring network (NTN), a partnership of local...
Authors
James Webber, Kaylyn Gootman, Kenneth Hyer, Peter Tango, Douglas Moyer

A simple predictive model for salt marsh internal deterioration under sea-level rise and sediment deficits: Application to Chesapeake Bay A simple predictive model for salt marsh internal deterioration under sea-level rise and sediment deficits: Application to Chesapeake Bay

Salt marshes are dynamic biogeomorphic systems reliant on autochthonous and allochthonous input to maintain their three-dimensional configuration. Sea-level rise, subsidence, and sediment deficits can lead to submergence, open-water expansion, and ultimately loss of the vegetated marsh plain and associated ecosystem services. Widely used management-focused models focus on vegetation...
Authors
Neil K. Ganju, Kate Ackerman, Zafer Defne, Giulio Mariotti, David Curson, Zachary Posnik, Joel Carr, Joanna Grand

Potomac Tributary Summary: A summary of trends in tidal water quality and associated factors, 1985 - 2022 Potomac Tributary Summary: A summary of trends in tidal water quality and associated factors, 1985 - 2022

The Potomac Tributary Summary outlines change over time for a suite of monitored tidal water quality parameters and associated potential drivers of those trends for the period of 1985 to 2022, and provides a brief description of the current state of knowledge explaining these observed changes. Water quality parameters described include surface (above pycnocline) total nitrogen (TN)...
Authors
Breck Sullivan, Kaylyn Gootman, Alex Gunnerson, Sarah Betts, Gabriel Duran, Cindy Johnson, Christopher Mason, Elgin Perry, Gopal Bhatt, Jennifer Keisman, James Webber, Jon Harcum, Michael Lane, Olivia Devereux, Qian Zhang, Rebecca Murphy, Renee Karrh, Thomas Butler, Zhaoying Wei

Science

Evaluating the Risks of Tire-Derived Compounds to Fish in the Chesapeake Bay Watershed

Tires contain a chemical known as 6PPD which prevents them from quickly breaking down. Microscopic tire particles, generated mainly from the friction of tires on roads, release 6PPD-quinone (6PPDQ) when they come into contact with oxygen. During precipitation events, 6PPDQ can be washed off roads, harming fish in nearby waterways. In response to requests from fishery managers, the USGS is studying...
Evaluating the Risks of Tire-Derived Compounds to Fish in the Chesapeake Bay Watershed

Evaluating the Risks of Tire-Derived Compounds to Fish in the Chesapeake Bay Watershed

Tires contain a chemical known as 6PPD which prevents them from quickly breaking down. Microscopic tire particles, generated mainly from the friction of tires on roads, release 6PPD-quinone (6PPDQ) when they come into contact with oxygen. During precipitation events, 6PPDQ can be washed off roads, harming fish in nearby waterways. In response to requests from fishery managers, the USGS is studying...
Learn More

Using monitoring data to measure conditions over time in Chesapeake Bay streams

This study provides a comprehensive assessment of the health of streams throughout the Chesapeake Bay. Monitoring data were used to assess seven key indicators of stream condition, revealing consistent patterns of degradation in urban and agricultural areas. The findings offer critical insights that can inform watershed restoration efforts and improve long-term monitoring strategies.
Using monitoring data to measure conditions over time in Chesapeake Bay streams

Using monitoring data to measure conditions over time in Chesapeake Bay streams

This study provides a comprehensive assessment of the health of streams throughout the Chesapeake Bay. Monitoring data were used to assess seven key indicators of stream condition, revealing consistent patterns of degradation in urban and agricultural areas. The findings offer critical insights that can inform watershed restoration efforts and improve long-term monitoring strategies.
Learn More

Prioritizing marsh restoration needs throughout Chesapeake Bay

A new USGS study estimates potential losses of Chesapeake Bay salt marshes that could occur in the next 80 years if no marsh restoration is undertaken. Using a suite of models, USGS researchers identified how future potential marsh changes can be used to prioritize present-day site-specific planning and restoration needs.
Prioritizing marsh restoration needs throughout Chesapeake Bay

Prioritizing marsh restoration needs throughout Chesapeake Bay

A new USGS study estimates potential losses of Chesapeake Bay salt marshes that could occur in the next 80 years if no marsh restoration is undertaken. Using a suite of models, USGS researchers identified how future potential marsh changes can be used to prioritize present-day site-specific planning and restoration needs.
Learn More
Was this page helpful?