Skip to main content
U.S. flag

An official website of the United States government

Publications

Filter Total Items: 1869

3-D wave propagation simulations of Mw 6.5+ earthquakes on the Tacoma Fault, Washington state, considering the effects of topography, a geotechnical gradient, and a fault damage zone

We simulate shaking in Tacoma, Washington, and surrounding areas from Mw 6.5 and 7.0 earthquakes on the Tacoma fault. Ground motions are directly modeled up to 2.5 Hz using kinematic, finite‐fault sources; a 3D seismic velocity model considering regional geology; and a model mesh with 30 m sampling at the ground surface. In addition, we explore how adjustments to the seismic velocity model affect
Authors
Ian Patrick Stone, Erin Wirth, Alex R. R. Grant, Arthur Frankel

Quantifying site effects and their influence on earthquake source parameter estimations using a dense array in Oklahoma

We investigate the effects of site response on source parameter estimates using earthquakes recorded by the LArge-n Seismic Survey in Oklahoma (LASSO). While it is well known that near-surface unconsolidated sediments can cause an apparent breakdown of earthquake self-similarity, the influence of laterally varying site conditions remains unclear. We analyze site conditions across the 1825-station
Authors
Hilary Chang, Rachel E. Abercrombie, Nori Nakata, Colin Pennington, Kilian B. Kemna, Elizabeth S. Cochran, Rebecca M. Harrington

Seismic images and subsurface structures of northeastern Edwards Air Force Base, Kern County, California

We used multi-component seismic data (including two-dimensional images of compressional-wave velocity [vP], shear-wave velocity [vS], the ratio of compressional-wave velocity to shear-wave velocity [vP/vS ratio], Poisson’s ratio [μ], and seismic reflections) along a transect across northeastern Edwards Air Force Base to investigate the upper few hundred meters of the subsurface. The shallow subsur
Authors
Rufus D. Catchings, Mark R. Goldman, Joanne H. Chan, Robert R. Sickler, Coyn J. Criley

Ground‐motion variability from kinematic rupture models and the implications for nonergodic probabilistic seismic hazard analysis

The variability of earthquake ground motions has a strong control on probabilistic seismic hazard analysis (PSHA), particularly for the low frequencies of exceedance used for critical facilities. We use a crossed mixed‐effects model to partition the variance components from simulated ground motions of Mw 7 earthquakes on the Salt Lake City segment of the Wasatch fault zone. Total variability of si
Authors
Grace Alexandra Parker, Morgan P. Moschetti, Eric M. Thompson

Comparison of earthquake early warning systems and the national volcano early warning system at the U.S. Geological Survey

IntroductionEvery year in the United States, natural hazards threaten lives and livelihoods, resulting in thousands of casualties and billions of dollars in damage. The U.S. Geological Survey (USGS) Natural Hazards Mission Area works with many partners to monitor, assess, and research a wide range of natural hazards, including earthquakes and volcanic eruptions. These efforts aim to enhance commun
Authors
Aleeza Wilkins, Charlie Mandeville, John Power, Doug Given

Scaling microseismic cloud shape during hydraulic stimulation using in-situ stress and permeability

Forecasting microseismic cloud shape as a proxy of stimulated rock volume may improve the design of an energy extraction system. The microseismic cloud created during hydraulic stimulation of geothermal reservoirs is known empirically to extend in the general direction of the maximum principal stress. However, this empirical relationship is often inconsistent with reported results, and the cloud g
Authors
Y. Mukuhira, M. Yang, T. Ishibashi, K. Okamoto, H. Moriya, Y. Kumano, H. Asanuma, S.A. Shapiro, Justin Rubinstein, T. Ito, K. Yan, Y. Zuo

Converted-wave reverse time migration imaging in subduction zone settings

We use a newly developed 2-D elastic reverse time migration (RTM) imaging algorithm based on the Helmholtz decomposition to test approaches for imaging the descending slab in subduction zone regions using local earthquake sources. Our elastic RTM method is designed to reconstruct incident and scattered wavefields at depth, isolate constituent P- and S-wave components via Helmholtz decomposition, a
Authors
Leah Langer, Fred Pollitz, Jeffrey McGuire

Accuracy of finite fault slip estimates in subduction zone regions with topographic Green's functions and seafloor geodesy

Until recently, the lack of seafloor geodetic instrumentation and the use of unrealistically simple, half-space based forward models have resulted in poor resolution of near-trench slip in subduction zone settings. Here, we use a synthetic framework to investigate the impact of topography and geodetic data distribution on coseismic slip estimates in various subduction zone settings. We calculate s
Authors
Leah Langer, Théa Ragon

Slip deficit rates on southern Cascadia faults resolved with viscoelastic earthquake cycle modeling of geodetic deformation

The fore‐arc of the southern Cascadia subduction zone (CSZ), north of the Mendocino triple junction (MTJ), is home to a network of Quaternary‐active crustal faults that accumulate strain due to the interaction of the North American, Juan de Fuca (Gorda), and Pacific plates. These faults, including the Little Salmon and Mad River fault (LSF and MRF) zones, are located near the most populated parts
Authors
Kathryn Zerbe Materna, Jessica R. Murray, Fred Pollitz, Jason R. Patton

A detailed view of the 2020-2023 southwestern Puerto Rico seismic sequence with deep learning

The 2020–2023 southwestern Puerto Rico seismic sequence, still ongoing in 2023, is remarkable for its multiple‐fault rupture complexity and elevated aftershock productivity. We applied an automatic workflow to continuous data from 43 seismic stations in Puerto Rico to build an enhanced earthquake catalog with ∼180,000 events for the 3+ yr sequence from 28 December 2019 to 1 January 2023. This work
Authors
Clara Yoon, Elizabeth S. Cochran, Elizabeth A. Vanacore, Victor Huerfano, Gisela Báez-Sánchez, John D. Wilding, Jonathan D. Smith

Witnessing history: Comparison of a century of sedimentary and written records in a California protected area

We use a combination of proxy records from a high-resolution analysis of sediments from Searsville Lake and adjacent Upper Lake Marsh and historical records to document over one and a half centuries of vegetation and socio-ecological change—relating to logging, agricultural land use change, dam construction, chemical applications, recreation, and other drivers—on the San Francisco Peninsula. A rel
Authors
R. Scott Anderson, M. Allison Stegner, SeanPaul La Selle, Brian Sherrod, Anthony D. Barnosky, Elizabeth A. Hadly
Was this page helpful?