Skip to main content
U.S. flag

An official website of the United States government

Groundwater and Streamflow Information

Groundwater and surface water are among the Nation’s most important natural resources. The USGS provides unbiased, timely, and relevant information, studies, and data about water resources of the Nation. The NYWSC maintains a network of more than 300 surface water and 650 groundwater monitoring stations across New York State; over the years, the USGS has collected water-resources data at approximately 1.5 million sites in all 50 States, the District of Columbia, Puerto Rico, the Virgin Islands, Guam, American Samoa, and the Northern Mariana Islands. The data collected at the various sites are synthesized in State-level, interstate, and international studies to evaluate resources not only in one State but also other States and countries that might be affected or may influence the condition of surface water and groundwater. The data collected are used in studies of water supplies, groundwater contamination, flooding, water stored in ice and the oceans, and the effects of climate and land use change and manmade influences.

Filter Total Items: 106

Groundwater Flow Modeling - Long Island, New York

Numerical models provide a means to synthesize existing hydrogeologic information into an internally consistent mathematical representation of a real system or process, and thus are useful tools for testing and improving conceptual models or hypotheses of groundwater flow systems. The goal of this effort is to develop a regional model for the Long Island aquifer system to simulate changes in water...
link

Groundwater Flow Modeling - Long Island, New York

Numerical models provide a means to synthesize existing hydrogeologic information into an internally consistent mathematical representation of a real system or process, and thus are useful tools for testing and improving conceptual models or hypotheses of groundwater flow systems. The goal of this effort is to develop a regional model for the Long Island aquifer system to simulate changes in water...
Learn More

Groundwater Sustainability of the Long Island Aquifer System

The U.S. Geological Survey (USGS) has partnered with the New York State Department of Environmental Conservation (NYSDEC) to conduct a comprehensive study of the Long Island aquifer system. The major findings of this investigation include: The location of the boundary between fresh and salty groundwater is much closer to the shoreline than previously thought. The historical onshore saltwater...
link

Groundwater Sustainability of the Long Island Aquifer System

The U.S. Geological Survey (USGS) has partnered with the New York State Department of Environmental Conservation (NYSDEC) to conduct a comprehensive study of the Long Island aquifer system. The major findings of this investigation include: The location of the boundary between fresh and salty groundwater is much closer to the shoreline than previously thought. The historical onshore saltwater...
Learn More

Hydrogeologic-Framework Mapping - Long Island, New York

Long Island is underlain by unconsolidated Holocene deposits, glacial deposits of Pleistocene age, and coastal-plain deposits of Late Cretaceous age. These sediments consist of gravel, sand, silt, and clay underlain by crystalline bedrock of early Paleozoic age (figure 2b). The bedrock is relatively impermeable, and forms the base of the groundwater-flow system on Long Island. The geologic and...
link

Hydrogeologic-Framework Mapping - Long Island, New York

Long Island is underlain by unconsolidated Holocene deposits, glacial deposits of Pleistocene age, and coastal-plain deposits of Late Cretaceous age. These sediments consist of gravel, sand, silt, and clay underlain by crystalline bedrock of early Paleozoic age (figure 2b). The bedrock is relatively impermeable, and forms the base of the groundwater-flow system on Long Island. The geologic and...
Learn More

Saltwater-Interface Mapping - Long Island, New York

Saltwater intrusion is the most common type of water-quality degradation in coastal-plain aquifers. In coastal areas, the hydraulic head under predevelopment (nonpumping) conditions is higher on land than in the surrounding saltwater embayments; thus, fresh groundwater flows seaward (from areas of high potential to areas of lower potential) and meets saltwater at an equilibrium point (interface)...
link

Saltwater-Interface Mapping - Long Island, New York

Saltwater intrusion is the most common type of water-quality degradation in coastal-plain aquifers. In coastal areas, the hydraulic head under predevelopment (nonpumping) conditions is higher on land than in the surrounding saltwater embayments; thus, fresh groundwater flows seaward (from areas of high potential to areas of lower potential) and meets saltwater at an equilibrium point (interface)...
Learn More

Methods for Estimation Flood Magnitude and Frequency at Ungaged Streams in New York, excluding Long Island

Summary: Extreme flooding can threaten life and property in flood-prone areas, as well as cause damage to critical infrastructure along roadways and canals. The effective management of these areas, and appropriate design of structures along rivers and streams, relies on understanding the magnitude and frequency of floods at gaged locations, and the ability to estimate these data at ungaged strea
link

Methods for Estimation Flood Magnitude and Frequency at Ungaged Streams in New York, excluding Long Island

Summary: Extreme flooding can threaten life and property in flood-prone areas, as well as cause damage to critical infrastructure along roadways and canals. The effective management of these areas, and appropriate design of structures along rivers and streams, relies on understanding the magnitude and frequency of floods at gaged locations, and the ability to estimate these data at ungaged strea
Learn More

Geohydrology of the Valley‐fill Aquifer in the Lower Fall Creek Valley, Town of Dryden, Tompkins County, New York

PROBLEM The valley‐fill aquifer in the lower Fall Creek valley (designated as aquifer 4, fig. 1), within the Towns of Dryden and Groton, was mapped by Miller (2000) and identified as one of 17 unconsolidated aquifers in Tompkins County that need to be studied in more detail. The east end of the valley (near the Tompkins and Cortland County border) is on the backside of a large morainal plug, which
link

Geohydrology of the Valley‐fill Aquifer in the Lower Fall Creek Valley, Town of Dryden, Tompkins County, New York

PROBLEM The valley‐fill aquifer in the lower Fall Creek valley (designated as aquifer 4, fig. 1), within the Towns of Dryden and Groton, was mapped by Miller (2000) and identified as one of 17 unconsolidated aquifers in Tompkins County that need to be studied in more detail. The east end of the valley (near the Tompkins and Cortland County border) is on the backside of a large morainal plug, which
Learn More
link

Search for New York Water Science Center Projects by County

Search for NYWSC projects by county name.
Learn More

An Analysis of Trends in the Magnitude of Floods in Urbanized Watersheds on Long Island, New York

Summary: This study aims to do a thorough analysis of trends in peak streamflows on Long Island. Reliable information about the magnitude and frequency of floods is essential for flood insurance studies, flood-plain management, and the design of transportation and water-conveyance infrastructure, such as roads, bridges, culverts, dams, and levees. Federal, State, regional, and local officials need
link

An Analysis of Trends in the Magnitude of Floods in Urbanized Watersheds on Long Island, New York

Summary: This study aims to do a thorough analysis of trends in peak streamflows on Long Island. Reliable information about the magnitude and frequency of floods is essential for flood insurance studies, flood-plain management, and the design of transportation and water-conveyance infrastructure, such as roads, bridges, culverts, dams, and levees. Federal, State, regional, and local officials need
Learn More

Analysis of Factors Affecting Plume Remediation in a Sole-Source Aquifer System, Nassau County, New York (Northrup Grumman Plume)

Problem: Dissolved volatile-organic compounds (VOCs), including trichloroethylene (TCE), have been identified in a sole-source aquifer near the former Northrop Grumman Bethpage facility and Naval Weapons Industrial Reserve Plant (NWIRP) in Nassau County, N.Y. The Northrop Grumman Bethpage facility and NWIRP are listed as Class II inactive hazardous waste disposal sites (Site Nos. HW130003A and HW
link

Analysis of Factors Affecting Plume Remediation in a Sole-Source Aquifer System, Nassau County, New York (Northrup Grumman Plume)

Problem: Dissolved volatile-organic compounds (VOCs), including trichloroethylene (TCE), have been identified in a sole-source aquifer near the former Northrop Grumman Bethpage facility and Naval Weapons Industrial Reserve Plant (NWIRP) in Nassau County, N.Y. The Northrop Grumman Bethpage facility and NWIRP are listed as Class II inactive hazardous waste disposal sites (Site Nos. HW130003A and HW
Learn More

Groundwater-Quality of Nassau County, Long Island, New York

Problem Statement There are over 1.3 million residents in Nassau County that rely on groundwater as their sole source of potable drinking water. The mixed land uses (residential, commercial, industrial, agricultural, and recreational) of Nassau County contribute point and non-point sources of aquifer contamination. Nassau County water purveyors currently operate supply wells screened in the upper
link

Groundwater-Quality of Nassau County, Long Island, New York

Problem Statement There are over 1.3 million residents in Nassau County that rely on groundwater as their sole source of potable drinking water. The mixed land uses (residential, commercial, industrial, agricultural, and recreational) of Nassau County contribute point and non-point sources of aquifer contamination. Nassau County water purveyors currently operate supply wells screened in the upper
Learn More

Surface-water quality in the Lake Erie/Niagara River Basin of New York State

Problem The New York State Department of Environmental Conservation (NYSDEC) intends to develop a Nine-Element Watershed Plan (http://www.dec.ny.gov/chemical/103264.html) for the Lake Erie/Niagara Basin. To develop the Nine-Element Plan, NYSDEC needs a high quality, quality assured, nutrient-loading dataset to serve as a baseline against which future change can be measured and to identify areas i
link

Surface-water quality in the Lake Erie/Niagara River Basin of New York State

Problem The New York State Department of Environmental Conservation (NYSDEC) intends to develop a Nine-Element Watershed Plan (http://www.dec.ny.gov/chemical/103264.html) for the Lake Erie/Niagara Basin. To develop the Nine-Element Plan, NYSDEC needs a high quality, quality assured, nutrient-loading dataset to serve as a baseline against which future change can be measured and to identify areas i
Learn More

Hydrogeologic and Geochemical Assessment of the Effects of Leakage from the Catskill and Delaware Aqueducts on the Local Bedrock and Overburden Aquifers in Southeastern New York

PROBLEM As part of an effort to sustain a viable water-supply system for 8 million residents in New York City, and 1 million other residents in upstate New York that rely on City water, the New York City Department of Environmental Protection (NYCDEP) has requested a multi-disciplinary study by the U.S. Geological Survey (USGS) to determine the source(s) of water to surface-water sites (springs
link

Hydrogeologic and Geochemical Assessment of the Effects of Leakage from the Catskill and Delaware Aqueducts on the Local Bedrock and Overburden Aquifers in Southeastern New York

PROBLEM As part of an effort to sustain a viable water-supply system for 8 million residents in New York City, and 1 million other residents in upstate New York that rely on City water, the New York City Department of Environmental Protection (NYCDEP) has requested a multi-disciplinary study by the U.S. Geological Survey (USGS) to determine the source(s) of water to surface-water sites (springs
Learn More
Was this page helpful?