Sediments
Sediments
Filter Total Items: 19
Barrier Island Comprehensive Monitoring
Historical and newly acquired data were used to assess and monitor changes in the aerial and subaqueous extent of islands, habitat types, sediment properties, environmental processes, and vegetation composition.
Integrating Mapping and Modeling to Support the Restoration of Bird Nesting Habitat at Breton Island National Wildlife Refuge
In response to storms, reduced sediment supply, and sea-level rise, Breton Island is rapidly deteriorating, impacting the available nesting habitat of endangered seabirds. This study provides critical information regarding the physical environment of the island system.
Science Support for the Mississippi Coastal Improvement Project
Since 2007, the USGS (with NPS and USACE) has been mapping the seafloor and substrate around the Mississippi barrier islands to characterize the near-surface stratigraphy and identify the influence it has on island evolution and fate.
Geologic Evolution of Cat Island, Mississippi
The geologic evolution of Cat Island has been influenced by deltaic, lagoonal/estuarine, tidal, and oceanographic processes, resulting in a complex stratigraphic record.
Video Remote Sensing of Coastal Processes
Video observations of the coast are used to monitor a range of coastal processes, for example changes in the shoreline position, both seasonally and due to long-term effects such as sea-level rise, and instances of beach and dune erosion during extreme storm events.
Geologic and Morphologic Evolution of Coastal Margins
A combination of geophysics, sediment sampling, and chronology techniques are used to characterize the regional geomorphologic response of coastal systems to environmental changes.
Using Video Imagery to Study Coastal Change: Madeira Beach, Florida
Video observations of Madeira Beach, Florida, are used to monitor a range of coastal processes, for example changes in the shoreline position, both seasonally and due to long-term effects such as sea-level rise, and instances of beach and dune erosion during extreme storm events.