High-resolution maps of big sagebrush plant community biomass using multivariate matching algorithms
These GeoTIFF data were compiled to investigate how a new multivariate matching algorithm transfers simulated plant functional biomass of big sagebrush plant communities from 200 sites to a gridded product with 30-arcsec spatial resolution. Objectives of our study were to (1) describe how climate change will alter the biomass and composition of key plant functional types; (2) quantify the impacts of climate change on future functional type biomass and composition along climatic gradients; (3) identify if and which geographic locations will be relatively unaffected by climate change while others experience large effects; and (4) determine if there is consistency in climate change impacts on plant communities among a representative set of climate scenarios. These data represent geographic patterns in simulated plant functional biomass of big sagebrush plant communities (cheatgrass, perennial forbs, C3 perennial grasses, C4 perennial grasses, perennial grasses, big sagebrush) as across-year averages of under historical ("current"; years 1980-2010) climate and differences ("change") between projected future climates (years 2030-2060 and 2070-2100) derived as medians across 13 Global Climate Models (GCMs) that participated in CMIP5 for representative concentration pathways RCP4.5 and RCP8.5 and historical values. These data were created in 2020 and 2021 for the area of the sagebrush region in the western United States to describe geographic patterns in simulated plant functional biomass of big sagebrush plant communities under historical and projected future climate conditions at a 30-arcsec spatial resolution. These data can be used to confirm the results of the study identified as the Larger Work Citation, including the high resolution matching of projected declines in big sagebrush, perennial C3 grass and perennial forb biomass in warm, dry sites; no projected change or increases in functional type biomass in cold, moist sites; and widespread projected increases in perennial C4 grasses across sagebrush plant communities in the sagebrush region of the western United States as defined by Palmquist et al. (2021) and within the scope as defined by the study. These data may also be used to evaluate the potential impact of changing climate conditions on geographic patterns in simulated plant functional biomass of big sagebrush plant communities within the scope defined by the study. In particular, these data can be useful for informing the design of long-term landscape conservation efforts to maintain and expand wildlife habitat across the sagebrush biome.
Citation Information
Publication Year | 2021 |
---|---|
Title | High-resolution maps of big sagebrush plant community biomass using multivariate matching algorithms |
DOI | 10.5066/P9MNKWS4 |
Authors | Rachel R Renne, Kyle A. Palmquist, Daniel R Schlaepfer, William K. Lauenroth, John B Bradford |
Product Type | Data Release |
Record Source | USGS Asset Identifier Service (AIS) |
USGS Organization | Southwest Biological Science Center - Flagstaff, AZ, Headquarters |
Rights | This work is marked with CC0 1.0 Universal |