Video of a slow moving lava flow in Kīlauea Volcano's lower East Rift Zone, taken May 20, 2018, at around 2:31 AM HST. The flow is ~3 m (9 ft) high. The HVO scientist mapping the flow is about ~15 m (50 ft) away from the flow front.
How Do Volcanoes Erupt?
Deep within the Earth it is so hot that some rocks slowly melt and become a thick flowing substance called magma. Since it is lighter than the solid rock around it, magma rises and collects in magma chambers. Eventually, some of the magma pushes through vents and fissures to the Earth's surface. Magma that has erupted is called lava.
Some volcanic eruptions are explosive and others are not. The explosivity of an eruption depends on the composition of the magma. If magma is thin and runny, gases can escape easily from it. When this type of magma erupts, it flows out of the volcano. A good example is the eruptions at Hawaii’s volcanoes. Lava flows rarely kill people because they move slowly enough for people to get out of their way. If magma is thick and sticky, gases cannot escape easily. Pressure builds up until the gases escape violently and explode. A good example is the eruption of Washington’s Mount St. Helens. In this type of eruption, the magma blasts into the air and breaks apart into pieces called tephra. Tephra can range in size from tiny particles of ash to house-size boulders.
Explosive volcanic eruptions can be dangerous and deadly. They can blast out clouds of hot tephra from the side or top of a volcano. These fiery clouds race down mountainsides destroying almost everything in their path. Ash erupted into the sky falls back to Earth like powdery snow. If thick enough, blankets of ash can suffocate plants, animals, and humans. When hot volcanic materials mix with water from streams or melted snow and ice, mudflows form. Mudflows (lahars) have buried entire communities located near erupting volcanoes.
Learn more:
Related
What is the difference between "magma" and "lava"?
Do volcanoes affect weather?
What kind of school training do you need to become a volcanologist?
Is it dangerous to work on volcanoes? What precautions do scientists take?
How hot is a Hawaiian volcano?
How dangerous are pyroclastic flows?
What are some benefits of volcanic eruptions?
Where is the largest active volcano in the world?
How many active volcanoes are there on Earth?
Will extinct volcanoes on the east coast of the U.S. erupt again?
Can an eruption at one volcano trigger an eruption at another volcano?
Video of a slow moving lava flow in Kīlauea Volcano's lower East Rift Zone, taken May 20, 2018, at around 2:31 AM HST. The flow is ~3 m (9 ft) high. The HVO scientist mapping the flow is about ~15 m (50 ft) away from the flow front.

Tephra blasted from the summit vent on Saturday night included lithic (solid rock) fragments from the vent wall as well as spatter (molten lava fragments) ejected from the lava lake. The light-colored lithic in the center of this photo is about 20 cm (8 in) long—the GPS unit is shown for scale.
Tephra blasted from the summit vent on Saturday night included lithic (solid rock) fragments from the vent wall as well as spatter (molten lava fragments) ejected from the lava lake. The light-colored lithic in the center of this photo is about 20 cm (8 in) long—the GPS unit is shown for scale.
The United States has 169 active volcanoes. More than half of them could erupt explosively, sending ash up to 20,000 or 30,000 feet where commercial air traffic flies. USGS scientists are working to improve our understanding of volcano hazards to help protect communities and reduce the risks.
Video Sections:
The United States has 169 active volcanoes. More than half of them could erupt explosively, sending ash up to 20,000 or 30,000 feet where commercial air traffic flies. USGS scientists are working to improve our understanding of volcano hazards to help protect communities and reduce the risks.
Video Sections:
View looking down onto the northeastern vent.
View looking down onto the northeastern vent.
This fissure began in the early hours of March 6, erupting spatter and producing lava flows.
This fissure began in the early hours of March 6, erupting spatter and producing lava flows.
Video showing low fountaining from the dominant vent, near the southwest end of the fissure system adjacent to Napau Crater, active during the day on March 7.
Video showing low fountaining from the dominant vent, near the southwest end of the fissure system adjacent to Napau Crater, active during the day on March 7.

On October 12, 2008, an explosive eruption, shown in this video, blasted lithic and juvenile tephra onto the Halema'uma'u crater rim 85 meters (280 feet) above the informally-named Overlook vent (see http://hvo.wr.usgs.gov/kilauea/timeline/ for links describing eruptive activity at the summit of Kilauea Volcano)
On October 12, 2008, an explosive eruption, shown in this video, blasted lithic and juvenile tephra onto the Halema'uma'u crater rim 85 meters (280 feet) above the informally-named Overlook vent (see http://hvo.wr.usgs.gov/kilauea/timeline/ for links describing eruptive activity at the summit of Kilauea Volcano)

A gas plume arising from Augustine Volcano during it's eruptive phase 2005-06. This photo was taken during a FLIR/maintenance flight on January 24, 2006.
A gas plume arising from Augustine Volcano during it's eruptive phase 2005-06. This photo was taken during a FLIR/maintenance flight on January 24, 2006.

The June 12, 1991 eruption column from Mount Pinatubo taken from the east side of Clark Air Base.
The June 12, 1991 eruption column from Mount Pinatubo taken from the east side of Clark Air Base.
Erupting vents on Mauna Loa’s northeast rift zone near Pu‘u‘ula‘ula (Red Hill) on Mar. 25, 1984, sent massive ‘a‘ā lava flows down the rift toward Kūlani.
Erupting vents on Mauna Loa’s northeast rift zone near Pu‘u‘ula‘ula (Red Hill) on Mar. 25, 1984, sent massive ‘a‘ā lava flows down the rift toward Kūlani.

Steam-blast eruption from summit crater of Mount St. Helens. Aerial view, April 6, looking southwest, showing a roiling, gray-brown, ash-laden cloud that envelops and almost completely hides an initial fingerlike ash column, and an upper white cloud formed by atmospheric condensation of water vapor in the convectively rising top of the eruptive column.
Steam-blast eruption from summit crater of Mount St. Helens. Aerial view, April 6, looking southwest, showing a roiling, gray-brown, ash-laden cloud that envelops and almost completely hides an initial fingerlike ash column, and an upper white cloud formed by atmospheric condensation of water vapor in the convectively rising top of the eruptive column.
It begins with curiosity—How do scientists learn from volcanoes?
When volcanoes fall down—Catastrophic collapse and debris avalanches
Living with volcano hazards
2018 update to the U.S. Geological Survey national volcanic threat assessment
U.S. Geological Survey Volcano Hazards Program—Assess, forecast, prepare, engage
A sight "fearfully grand": eruptions of Lassen Peak, California, 1914 to 1917
Eruptions of Hawaiian volcanoes—Past, present, and future
Eruptions in the Cascade Range during the past 4,000 years
Geologic hazards at volcanoes
What are volcano hazards?
Volcanoes!
This dynamic earth: the story of plate tectonics
Related
What is the difference between "magma" and "lava"?
Do volcanoes affect weather?
What kind of school training do you need to become a volcanologist?
Is it dangerous to work on volcanoes? What precautions do scientists take?
How hot is a Hawaiian volcano?
How dangerous are pyroclastic flows?
What are some benefits of volcanic eruptions?
Where is the largest active volcano in the world?
How many active volcanoes are there on Earth?
Will extinct volcanoes on the east coast of the U.S. erupt again?
Can an eruption at one volcano trigger an eruption at another volcano?
Video of a slow moving lava flow in Kīlauea Volcano's lower East Rift Zone, taken May 20, 2018, at around 2:31 AM HST. The flow is ~3 m (9 ft) high. The HVO scientist mapping the flow is about ~15 m (50 ft) away from the flow front.
Video of a slow moving lava flow in Kīlauea Volcano's lower East Rift Zone, taken May 20, 2018, at around 2:31 AM HST. The flow is ~3 m (9 ft) high. The HVO scientist mapping the flow is about ~15 m (50 ft) away from the flow front.

Tephra blasted from the summit vent on Saturday night included lithic (solid rock) fragments from the vent wall as well as spatter (molten lava fragments) ejected from the lava lake. The light-colored lithic in the center of this photo is about 20 cm (8 in) long—the GPS unit is shown for scale.
Tephra blasted from the summit vent on Saturday night included lithic (solid rock) fragments from the vent wall as well as spatter (molten lava fragments) ejected from the lava lake. The light-colored lithic in the center of this photo is about 20 cm (8 in) long—the GPS unit is shown for scale.
The United States has 169 active volcanoes. More than half of them could erupt explosively, sending ash up to 20,000 or 30,000 feet where commercial air traffic flies. USGS scientists are working to improve our understanding of volcano hazards to help protect communities and reduce the risks.
Video Sections:
The United States has 169 active volcanoes. More than half of them could erupt explosively, sending ash up to 20,000 or 30,000 feet where commercial air traffic flies. USGS scientists are working to improve our understanding of volcano hazards to help protect communities and reduce the risks.
Video Sections:
View looking down onto the northeastern vent.
View looking down onto the northeastern vent.
This fissure began in the early hours of March 6, erupting spatter and producing lava flows.
This fissure began in the early hours of March 6, erupting spatter and producing lava flows.
Video showing low fountaining from the dominant vent, near the southwest end of the fissure system adjacent to Napau Crater, active during the day on March 7.
Video showing low fountaining from the dominant vent, near the southwest end of the fissure system adjacent to Napau Crater, active during the day on March 7.

On October 12, 2008, an explosive eruption, shown in this video, blasted lithic and juvenile tephra onto the Halema'uma'u crater rim 85 meters (280 feet) above the informally-named Overlook vent (see http://hvo.wr.usgs.gov/kilauea/timeline/ for links describing eruptive activity at the summit of Kilauea Volcano)
On October 12, 2008, an explosive eruption, shown in this video, blasted lithic and juvenile tephra onto the Halema'uma'u crater rim 85 meters (280 feet) above the informally-named Overlook vent (see http://hvo.wr.usgs.gov/kilauea/timeline/ for links describing eruptive activity at the summit of Kilauea Volcano)

A gas plume arising from Augustine Volcano during it's eruptive phase 2005-06. This photo was taken during a FLIR/maintenance flight on January 24, 2006.
A gas plume arising from Augustine Volcano during it's eruptive phase 2005-06. This photo was taken during a FLIR/maintenance flight on January 24, 2006.

The June 12, 1991 eruption column from Mount Pinatubo taken from the east side of Clark Air Base.
The June 12, 1991 eruption column from Mount Pinatubo taken from the east side of Clark Air Base.
Erupting vents on Mauna Loa’s northeast rift zone near Pu‘u‘ula‘ula (Red Hill) on Mar. 25, 1984, sent massive ‘a‘ā lava flows down the rift toward Kūlani.
Erupting vents on Mauna Loa’s northeast rift zone near Pu‘u‘ula‘ula (Red Hill) on Mar. 25, 1984, sent massive ‘a‘ā lava flows down the rift toward Kūlani.

Steam-blast eruption from summit crater of Mount St. Helens. Aerial view, April 6, looking southwest, showing a roiling, gray-brown, ash-laden cloud that envelops and almost completely hides an initial fingerlike ash column, and an upper white cloud formed by atmospheric condensation of water vapor in the convectively rising top of the eruptive column.
Steam-blast eruption from summit crater of Mount St. Helens. Aerial view, April 6, looking southwest, showing a roiling, gray-brown, ash-laden cloud that envelops and almost completely hides an initial fingerlike ash column, and an upper white cloud formed by atmospheric condensation of water vapor in the convectively rising top of the eruptive column.