Hawaiian Volcano Observatory Geochemist Jeff Sutton and CSAV international volcanology students visit a continuous gas monitoring site on Kilauea's east rift zone during field studies portion of the summer training course.
What is "vog"? How is it related to sulfur dioxide (SO2) emissions?
Vog (volcanic smog) is a visible haze comprised of gas and an aerosol of tiny particles and acidic droplets created when sulfur dioxide (SO2) and other gases emitted from a volcano chemically interact with sunlight and atmospheric oxygen, moisture, and dust. Volcanic gas emissions can pose environmental and health risks to nearby communities.
Vog is a hazard that's associated with Hawaiian volcanoes in particular. See the Hawaii Interagency Vog Information Dashboard for detailed information and current conditions.
Learn more:
- Volcanic gases can be harmful to health, vegetation, and infrastructure
- Volcanic gas hazards from Kilauea Volcano
- USGS Hawaiian Volcano Observatory FAQs about volcanic smog (vog)
Related
What gases are emitted by Kīlauea and other active volcanoes?
Who monitors volcanic gases emitted by Kīlauea and how is it done?
Does vog (volcanic smog) impact plants and animals?
How much sulfur dioxide (SO2) gas does Kīlauea emit?
Where and how do sulfur dioxide and volcanic gases (vog) affect air quality in Hawaii?
Should I cancel my plans to visit Hawai`i Island because of sulfur dioxide (SO2) and vog?
What health hazards are posed by vog (volcanic smog)?
Does ash ever erupt from Kīlauea Volcano?
How hot is a Hawaiian volcano?
Is it dangerous to work on volcanoes? What precautions do scientists take?
Why is it important to monitor volcanoes?

Hawaiian Volcano Observatory Geochemist Jeff Sutton and CSAV international volcanology students visit a continuous gas monitoring site on Kilauea's east rift zone during field studies portion of the summer training course.

Hawaiian Volcano Observatory Geochemist Jeff Sutton and CSAV international volcanology students visit a continuous gas monitoring site on Kilauea's east rift zone during field studies portion of the summer training course.
Hawaiian Volcano Observatory Geochemist Jeff Sutton and CSAV international volcanology students visit a continuous gas monitoring site on Kilauea's east rift zone during field studies portion of the summer training course.
The United States has 169 active volcanoes. More than half of them could erupt explosively, sending ash up to 20,000 or 30,000 feet where commercial air traffic flies. USGS scientists are working to improve our understanding of volcano hazards to help protect communities and reduce the risks.
Video Sections:
The United States has 169 active volcanoes. More than half of them could erupt explosively, sending ash up to 20,000 or 30,000 feet where commercial air traffic flies. USGS scientists are working to improve our understanding of volcano hazards to help protect communities and reduce the risks.
Video Sections:
We live at the bottom of an ocean of air. Most adults take around 29,000 breaths a day, children breathe a little faster; but what is in this air we breathe? What are the gases in the air? How much of each gas is there? Do these gases have different weights? How cold are liquid nitrogen and dry ice, and where did those names come from?
We live at the bottom of an ocean of air. Most adults take around 29,000 breaths a day, children breathe a little faster; but what is in this air we breathe? What are the gases in the air? How much of each gas is there? Do these gases have different weights? How cold are liquid nitrogen and dry ice, and where did those names come from?
A gas-rich lava flow on the northwest margin of the new shield.
A gas-rich lava flow on the northwest margin of the new shield.
The new gas vent on the east wall of Pu`u `Ō `ō crater opening up next to an older vent (the dark opening to the right of the new gas vent) that sealed shut in the past few months. The new vent has been incandescent at night for the past few days.
The new gas vent on the east wall of Pu`u `Ō `ō crater opening up next to an older vent (the dark opening to the right of the new gas vent) that sealed shut in the past few months. The new vent has been incandescent at night for the past few days.
The ongoing eruption in Halema'uma'u Crater at the summit of Kilauea Volcano has experienced several significant interruptions in activity since it began in March 2008. The latest disruption began on June 30, 2009, when a large collapse of the vent rim dumped rubble onto the lava surface and dramatically reduced gas emissions.
The ongoing eruption in Halema'uma'u Crater at the summit of Kilauea Volcano has experienced several significant interruptions in activity since it began in March 2008. The latest disruption began on June 30, 2009, when a large collapse of the vent rim dumped rubble onto the lava surface and dramatically reduced gas emissions.

The erupting vent within Halema'uma'u Crater at Kilauea's summit (see http://hvo.wr.usgs.gov/kilauea/timeline/ for links describing eruptive activity at the summit of Kilauea Volcano) typically produces a white to gray gas plume dominated by steam.
The erupting vent within Halema'uma'u Crater at Kilauea's summit (see http://hvo.wr.usgs.gov/kilauea/timeline/ for links describing eruptive activity at the summit of Kilauea Volcano) typically produces a white to gray gas plume dominated by steam.

The USGS Hawaiian Volcano Observatory (foreground) is located on the caldera rim of Kilauea Volcano, Hawai'i—the most active volcano in the world. The observatory's location provides an excellent view of summit eruptive activity, which began in 2008.
The USGS Hawaiian Volcano Observatory (foreground) is located on the caldera rim of Kilauea Volcano, Hawai'i—the most active volcano in the world. The observatory's location provides an excellent view of summit eruptive activity, which began in 2008.

Ash-rich plume rises out of Halemaʻumaʻu Crater, Kilauea Volcano Hawaiʻi.
Ash-rich plume rises out of Halemaʻumaʻu Crater, Kilauea Volcano Hawaiʻi.
The rim of Kīlauea Volcano’s summit caldera, normally clear on trade-wind days (left), became nearly obscured by vog (right) on some non-trade wind days beginning in 2008, when sulfur dioxide emissions from the volcano’s summit increased to unusually high levels. (This photo has been edited.)
The rim of Kīlauea Volcano’s summit caldera, normally clear on trade-wind days (left), became nearly obscured by vog (right) on some non-trade wind days beginning in 2008, when sulfur dioxide emissions from the volcano’s summit increased to unusually high levels. (This photo has been edited.)

Gas-pistoning is an interesting phenomenon seen at Kilauea and other volcanoes. It is caused by the accumulation of gas within, or the rise of a gas slug through, a column of lava. In either case, the gas pushes up the overlying lava (the "piston"). Eventually, the gas breaches the surface and escapes, sometimes as a forceful jet of fume and spatter.
Gas-pistoning is an interesting phenomenon seen at Kilauea and other volcanoes. It is caused by the accumulation of gas within, or the rise of a gas slug through, a column of lava. In either case, the gas pushes up the overlying lava (the "piston"). Eventually, the gas breaches the surface and escapes, sometimes as a forceful jet of fume and spatter.
USGS geologists gathered samples by hand from vents on the dome and crater floor. Additionally, sulfur dioxide gas was measured from a specially equipped airplane before, during, and after eruptions to determine "emission rates" for the volcano.
USGS geologists gathered samples by hand from vents on the dome and crater floor. Additionally, sulfur dioxide gas was measured from a specially equipped airplane before, during, and after eruptions to determine "emission rates" for the volcano.
Over the past several days, the lava surface within the vent in Halema'uma'u has occasionally, and temporarily, reached to within about 115 m (375 ft) below the floor of Halema'uma'u Crater, as seen in this photo. During these high-lava stands, the gas plume is generally fairly wispy, providing the rare naked-eye view of the lava surface.
Over the past several days, the lava surface within the vent in Halema'uma'u has occasionally, and temporarily, reached to within about 115 m (375 ft) below the floor of Halema'uma'u Crater, as seen in this photo. During these high-lava stands, the gas plume is generally fairly wispy, providing the rare naked-eye view of the lava surface.
Preliminary analyses of volcanic hazards at Kīlauea Volcano, Hawai‘i, 2017–2018
Living with volcano hazards
2018 update to the U.S. Geological Survey national volcanic threat assessment
Volcanic air pollution hazards in Hawaii
One hundred volatile years of volcanic gas studies at the Hawaiian Volcano Observatory
The ongoing Puʻu ʻŌʻō eruption of Kīlauea Volcano, Hawaiʻi: 30 years of eruptive activity
Mauna Loa--history, hazards and risk of living with the world's largest volcano
Sulfur dioxide emission rates from Kilauea Volcano, Hawaii, 2007-2010
Kilauea— An explosive volcano in Hawai‘i
Related
What gases are emitted by Kīlauea and other active volcanoes?
Who monitors volcanic gases emitted by Kīlauea and how is it done?
Does vog (volcanic smog) impact plants and animals?
How much sulfur dioxide (SO2) gas does Kīlauea emit?
Where and how do sulfur dioxide and volcanic gases (vog) affect air quality in Hawaii?
Should I cancel my plans to visit Hawai`i Island because of sulfur dioxide (SO2) and vog?
What health hazards are posed by vog (volcanic smog)?
Does ash ever erupt from Kīlauea Volcano?
How hot is a Hawaiian volcano?
Is it dangerous to work on volcanoes? What precautions do scientists take?
Why is it important to monitor volcanoes?

Hawaiian Volcano Observatory Geochemist Jeff Sutton and CSAV international volcanology students visit a continuous gas monitoring site on Kilauea's east rift zone during field studies portion of the summer training course.
Hawaiian Volcano Observatory Geochemist Jeff Sutton and CSAV international volcanology students visit a continuous gas monitoring site on Kilauea's east rift zone during field studies portion of the summer training course.

Hawaiian Volcano Observatory Geochemist Jeff Sutton and CSAV international volcanology students visit a continuous gas monitoring site on Kilauea's east rift zone during field studies portion of the summer training course.
Hawaiian Volcano Observatory Geochemist Jeff Sutton and CSAV international volcanology students visit a continuous gas monitoring site on Kilauea's east rift zone during field studies portion of the summer training course.
The United States has 169 active volcanoes. More than half of them could erupt explosively, sending ash up to 20,000 or 30,000 feet where commercial air traffic flies. USGS scientists are working to improve our understanding of volcano hazards to help protect communities and reduce the risks.
Video Sections:
The United States has 169 active volcanoes. More than half of them could erupt explosively, sending ash up to 20,000 or 30,000 feet where commercial air traffic flies. USGS scientists are working to improve our understanding of volcano hazards to help protect communities and reduce the risks.
Video Sections:
We live at the bottom of an ocean of air. Most adults take around 29,000 breaths a day, children breathe a little faster; but what is in this air we breathe? What are the gases in the air? How much of each gas is there? Do these gases have different weights? How cold are liquid nitrogen and dry ice, and where did those names come from?
We live at the bottom of an ocean of air. Most adults take around 29,000 breaths a day, children breathe a little faster; but what is in this air we breathe? What are the gases in the air? How much of each gas is there? Do these gases have different weights? How cold are liquid nitrogen and dry ice, and where did those names come from?
A gas-rich lava flow on the northwest margin of the new shield.
A gas-rich lava flow on the northwest margin of the new shield.
The new gas vent on the east wall of Pu`u `Ō `ō crater opening up next to an older vent (the dark opening to the right of the new gas vent) that sealed shut in the past few months. The new vent has been incandescent at night for the past few days.
The new gas vent on the east wall of Pu`u `Ō `ō crater opening up next to an older vent (the dark opening to the right of the new gas vent) that sealed shut in the past few months. The new vent has been incandescent at night for the past few days.
The ongoing eruption in Halema'uma'u Crater at the summit of Kilauea Volcano has experienced several significant interruptions in activity since it began in March 2008. The latest disruption began on June 30, 2009, when a large collapse of the vent rim dumped rubble onto the lava surface and dramatically reduced gas emissions.
The ongoing eruption in Halema'uma'u Crater at the summit of Kilauea Volcano has experienced several significant interruptions in activity since it began in March 2008. The latest disruption began on June 30, 2009, when a large collapse of the vent rim dumped rubble onto the lava surface and dramatically reduced gas emissions.

The erupting vent within Halema'uma'u Crater at Kilauea's summit (see http://hvo.wr.usgs.gov/kilauea/timeline/ for links describing eruptive activity at the summit of Kilauea Volcano) typically produces a white to gray gas plume dominated by steam.
The erupting vent within Halema'uma'u Crater at Kilauea's summit (see http://hvo.wr.usgs.gov/kilauea/timeline/ for links describing eruptive activity at the summit of Kilauea Volcano) typically produces a white to gray gas plume dominated by steam.

The USGS Hawaiian Volcano Observatory (foreground) is located on the caldera rim of Kilauea Volcano, Hawai'i—the most active volcano in the world. The observatory's location provides an excellent view of summit eruptive activity, which began in 2008.
The USGS Hawaiian Volcano Observatory (foreground) is located on the caldera rim of Kilauea Volcano, Hawai'i—the most active volcano in the world. The observatory's location provides an excellent view of summit eruptive activity, which began in 2008.

Ash-rich plume rises out of Halemaʻumaʻu Crater, Kilauea Volcano Hawaiʻi.
Ash-rich plume rises out of Halemaʻumaʻu Crater, Kilauea Volcano Hawaiʻi.
The rim of Kīlauea Volcano’s summit caldera, normally clear on trade-wind days (left), became nearly obscured by vog (right) on some non-trade wind days beginning in 2008, when sulfur dioxide emissions from the volcano’s summit increased to unusually high levels. (This photo has been edited.)
The rim of Kīlauea Volcano’s summit caldera, normally clear on trade-wind days (left), became nearly obscured by vog (right) on some non-trade wind days beginning in 2008, when sulfur dioxide emissions from the volcano’s summit increased to unusually high levels. (This photo has been edited.)

Gas-pistoning is an interesting phenomenon seen at Kilauea and other volcanoes. It is caused by the accumulation of gas within, or the rise of a gas slug through, a column of lava. In either case, the gas pushes up the overlying lava (the "piston"). Eventually, the gas breaches the surface and escapes, sometimes as a forceful jet of fume and spatter.
Gas-pistoning is an interesting phenomenon seen at Kilauea and other volcanoes. It is caused by the accumulation of gas within, or the rise of a gas slug through, a column of lava. In either case, the gas pushes up the overlying lava (the "piston"). Eventually, the gas breaches the surface and escapes, sometimes as a forceful jet of fume and spatter.
USGS geologists gathered samples by hand from vents on the dome and crater floor. Additionally, sulfur dioxide gas was measured from a specially equipped airplane before, during, and after eruptions to determine "emission rates" for the volcano.
USGS geologists gathered samples by hand from vents on the dome and crater floor. Additionally, sulfur dioxide gas was measured from a specially equipped airplane before, during, and after eruptions to determine "emission rates" for the volcano.
Over the past several days, the lava surface within the vent in Halema'uma'u has occasionally, and temporarily, reached to within about 115 m (375 ft) below the floor of Halema'uma'u Crater, as seen in this photo. During these high-lava stands, the gas plume is generally fairly wispy, providing the rare naked-eye view of the lava surface.
Over the past several days, the lava surface within the vent in Halema'uma'u has occasionally, and temporarily, reached to within about 115 m (375 ft) below the floor of Halema'uma'u Crater, as seen in this photo. During these high-lava stands, the gas plume is generally fairly wispy, providing the rare naked-eye view of the lava surface.